On extremal and perfect σ-algebras for d -actions on a Lebesgue space

B. Kamiński; Z. Kowalski; P. Liardet

Studia Mathematica (1997)

  • Volume: 124, Issue: 2, page 173-178
  • ISSN: 0039-3223

Abstract

top
We show that for every positive integer d there exists a d -action and an extremal σ-algebra of it which is not perfect.

How to cite

top

Kamiński, B., Kowalski, Z., and Liardet, P.. "On extremal and perfect σ-algebras for $ℤ^{d}$-actions on a Lebesgue space." Studia Mathematica 124.2 (1997): 173-178. <http://eudml.org/doc/216406>.

@article{Kamiński1997,
abstract = {We show that for every positive integer d there exists a $ℤ^d$-action and an extremal σ-algebra of it which is not perfect.},
author = {Kamiński, B., Kowalski, Z., Liardet, P.},
journal = {Studia Mathematica},
keywords = {extremal -algebra; perfect -algebra; entropy; Pinsker -algebra; ergodic transformation; finite generator},
language = {eng},
number = {2},
pages = {173-178},
title = {On extremal and perfect σ-algebras for $ℤ^\{d\}$-actions on a Lebesgue space},
url = {http://eudml.org/doc/216406},
volume = {124},
year = {1997},
}

TY - JOUR
AU - Kamiński, B.
AU - Kowalski, Z.
AU - Liardet, P.
TI - On extremal and perfect σ-algebras for $ℤ^{d}$-actions on a Lebesgue space
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 2
SP - 173
EP - 178
AB - We show that for every positive integer d there exists a $ℤ^d$-action and an extremal σ-algebra of it which is not perfect.
LA - eng
KW - extremal -algebra; perfect -algebra; entropy; Pinsker -algebra; ergodic transformation; finite generator
UR - http://eudml.org/doc/216406
ER -

References

top
  1. [1] M. Binkowska and B. Kamiński, Entropy increase for d -actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318. Zbl0826.28008
  2. [2] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30. Zbl0261.28015
  3. [3] S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343. Zbl0516.70021
  4. [4] S. A. Kalikow, T , T - 1 transformation is not loosely Bernoulli, Ann. of Math. 115 (1982), 393-409. Zbl0523.28018
  5. [5] B. Kamiński, Mixing properties of two-dimensional dynamical systems with completely positive entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 453-463. Zbl0469.28013
  6. [6] B. Kamiński, The theory of invariant partitions for d -actions, ibid. 29 (1981), 349-362. Zbl0479.28016
  7. [7] B. Kamiński, A representation theorem for perfect partitions for 2 -actions with finite entropy, Colloq. Math. 56 (1988), 121-127. Zbl0685.28009
  8. [8] B. Kamiński, Decreasing nets of σ-algebras and their applications to ergodic theory, Tôhoku Math. J. 43 (1991), 263-274. Zbl0752.28010
  9. [9] Z. S. Kowalski, A generalized skew product, Studia Math. 87 (1987), 215-222. Zbl0651.28013
  10. [10] W. Krieger, On generators in exhaustive σ-algebras of ergodic measure-preserving transformations, Z. Wahrsch. Verw. Gebiete 20 (1971), 75-82. Zbl0214.07201
  11. [11] I. Meilijson, Mixing properties of a class of skew-products, Israel J. Math. 19 (1974), 266-270. Zbl0305.28008
  12. [12] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian). 
  13. [13] T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350. Zbl0394.28009
  14. [14] T. Shimano, The multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148. Zbl0551.28021
  15. [15] T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226. Zbl0768.60031
  16. [16] P. Walters, Some results on the classification of non-invertible measure preserving transformations, in: Lecture Notes in Math. 318, Springer, 1973, 266-276. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.