Remarks on the Bergman kernel function of a worm domain
Studia Mathematica (1998)
- Volume: 130, Issue: 2, page 109-113
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLigocka, Ewa. "Remarks on the Bergman kernel function of a worm domain." Studia Mathematica 130.2 (1998): 109-113. <http://eudml.org/doc/216546>.
@article{Ligocka1998,
abstract = {We use a recent result of M. Christ to show that the Bergman kernel function of a worm domain cannot be $C^∞$-smoothly extended to the boundary.},
author = {Ligocka, Ewa},
journal = {Studia Mathematica},
keywords = {boundary smoothness; worm domain; Bergman kernel function},
language = {eng},
number = {2},
pages = {109-113},
title = {Remarks on the Bergman kernel function of a worm domain},
url = {http://eudml.org/doc/216546},
volume = {130},
year = {1998},
}
TY - JOUR
AU - Ligocka, Ewa
TI - Remarks on the Bergman kernel function of a worm domain
JO - Studia Mathematica
PY - 1998
VL - 130
IS - 2
SP - 109
EP - 113
AB - We use a recent result of M. Christ to show that the Bergman kernel function of a worm domain cannot be $C^∞$-smoothly extended to the boundary.
LA - eng
KW - boundary smoothness; worm domain; Bergman kernel function
UR - http://eudml.org/doc/216546
ER -
References
top- [1] D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), 1-10. Zbl0779.32013
- [2] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. Zbl0482.31004
- [3] S. Bell and H. Boas, Regularity of the Bergman projections in weakly pseudoconvex domains, Math. Ann. 257 (1981), 23-30. Zbl0451.32017
- [4] S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-285. Zbl0411.32010
- [5] H. Boas and E. Straube, Equivalence of regularity for the Bergman projection and the - Neumann operator, Manuscripta Math. 67 (1990), 25-33. Zbl0695.32011
- [6] M. Christ, Global irregularity of the - Neumann problem for worm domains, J. Amer, Math. Soc. 9 (1996), 1171-1185. Zbl0945.32022
- [7] K. Diederich and J. E. Fornæss, Pseudoconvex domains: an example with non-trivial Nebenhülle, Math. Ann. (1977), 275-292. Zbl0327.32008
- [8] G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy - Riemann Complex, Ann. of Math. Stud. 72, Princeton Univ. Press, 1972. Zbl0247.35093
- [9] C. O. Kiselman, A study of the Bergman projection in certain Hartogs domains, in: Proc. Sympos. Pure Math. 52, Part 3, Amer, Math. Soc., 1991, 219-231. Zbl0744.32011
- [10] J. J. Kohn, Global regularity for on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292 Zbl0276.35071
- [11] E. Ligocka, Some remarks on extension of biholomorphic mappings, in: Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer, 1980, 350-363.
- [12] S. Webster, Biholomorphic mappings and the Bergman kernel off diagonal, Invent. Math. 51 (1979), 155-169. Zbl0385.32019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.