Remarks on the Bergman kernel function of a worm domain

Ewa Ligocka

Studia Mathematica (1998)

  • Volume: 130, Issue: 2, page 109-113
  • ISSN: 0039-3223

Abstract

top
We use a recent result of M. Christ to show that the Bergman kernel function of a worm domain cannot be C -smoothly extended to the boundary.

How to cite

top

Ligocka, Ewa. "Remarks on the Bergman kernel function of a worm domain." Studia Mathematica 130.2 (1998): 109-113. <http://eudml.org/doc/216546>.

@article{Ligocka1998,
abstract = {We use a recent result of M. Christ to show that the Bergman kernel function of a worm domain cannot be $C^∞$-smoothly extended to the boundary.},
author = {Ligocka, Ewa},
journal = {Studia Mathematica},
keywords = {boundary smoothness; worm domain; Bergman kernel function},
language = {eng},
number = {2},
pages = {109-113},
title = {Remarks on the Bergman kernel function of a worm domain},
url = {http://eudml.org/doc/216546},
volume = {130},
year = {1998},
}

TY - JOUR
AU - Ligocka, Ewa
TI - Remarks on the Bergman kernel function of a worm domain
JO - Studia Mathematica
PY - 1998
VL - 130
IS - 2
SP - 109
EP - 113
AB - We use a recent result of M. Christ to show that the Bergman kernel function of a worm domain cannot be $C^∞$-smoothly extended to the boundary.
LA - eng
KW - boundary smoothness; worm domain; Bergman kernel function
UR - http://eudml.org/doc/216546
ER -

References

top
  1. [1] D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), 1-10. Zbl0779.32013
  2. [2] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. Zbl0482.31004
  3. [3] S. Bell and H. Boas, Regularity of the Bergman projections in weakly pseudoconvex domains, Math. Ann. 257 (1981), 23-30. Zbl0451.32017
  4. [4] S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-285. Zbl0411.32010
  5. [5] H. Boas and E. Straube, Equivalence of regularity for the Bergman projection and the ¯ - Neumann operator, Manuscripta Math. 67 (1990), 25-33. Zbl0695.32011
  6. [6] M. Christ, Global C irregularity of the ¯ - Neumann problem for worm domains, J. Amer, Math. Soc. 9 (1996), 1171-1185. Zbl0945.32022
  7. [7] K. Diederich and J. E. Fornæss, Pseudoconvex domains: an example with non-trivial Nebenhülle, Math. Ann. (1977), 275-292. Zbl0327.32008
  8. [8] G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy - Riemann Complex, Ann. of Math. Stud. 72, Princeton Univ. Press, 1972. Zbl0247.35093
  9. [9] C. O. Kiselman, A study of the Bergman projection in certain Hartogs domains, in: Proc. Sympos. Pure Math. 52, Part 3, Amer, Math. Soc., 1991, 219-231. Zbl0744.32011
  10. [10] J. J. Kohn, Global regularity for ¯ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292 Zbl0276.35071
  11. [11] E. Ligocka, Some remarks on extension of biholomorphic mappings, in: Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer, 1980, 350-363. 
  12. [12] S. Webster, Biholomorphic mappings and the Bergman kernel off diagonal, Invent. Math. 51 (1979), 155-169. Zbl0385.32019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.