On operators satisfying the Rockland condition

Waldemar Hebisch

Studia Mathematica (1998)

  • Volume: 131, Issue: 1, page 63-71
  • ISSN: 0039-3223

Abstract

top
Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.

How to cite

top

Hebisch, Waldemar. "On operators satisfying the Rockland condition." Studia Mathematica 131.1 (1998): 63-71. <http://eudml.org/doc/216563>.

@article{Hebisch1998,
abstract = {Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.},
author = {Hebisch, Waldemar},
journal = {Studia Mathematica},
keywords = {Rockland condition; regular kernel; homogeneous Lie group; Schwartz class function; operator},
language = {eng},
number = {1},
pages = {63-71},
title = {On operators satisfying the Rockland condition},
url = {http://eudml.org/doc/216563},
volume = {131},
year = {1998},
}

TY - JOUR
AU - Hebisch, Waldemar
TI - On operators satisfying the Rockland condition
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 1
SP - 63
EP - 71
AB - Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.
LA - eng
KW - Rockland condition; regular kernel; homogeneous Lie group; Schwartz class function; operator
UR - http://eudml.org/doc/216563
ER -

References

top
  1. [1] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407-411. Zbl0284.57026
  2. [2] M. Christ, D. Geller, P. Głowacki and L. Pollin, Pseudodifferential operators on groups with dilations, Duke Math. J. 68 (1992), 31-65. Zbl0764.35120
  3. [3] R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. Zbl0224.43006
  4. [4] R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, 1977. Zbl0371.43009
  5. [5] J. Dziuba/nski, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. Zbl0711.43003
  6. [6] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
  7. [7] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
  8. [8] P. Głowacki, The inversion problem for singular integral operators on homogeneous groups, Studia Math. 87 (1987), 53-69. Zbl0646.47034
  9. [9] P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395. Zbl0678.43002
  10. [10] P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114. Zbl0737.43002
  11. [11] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958. Zbl0423.35040
  12. [12] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. Zbl0564.43007
  13. [13] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (4) (1962), 57-110 (in Russian). 
  14. [14] J. Nourrigat, Inégalités L 2 et représentations de groupes nilpotents, J. Funct. Anal. 74 (1987), 300-327. Zbl0644.35026
  15. [15] J. Nourrigat, L 2 inequalities and representations of nilpotent groups, C.I.M.P.A. School of Harmonic Analysis, Wuhan, to appear. Zbl0644.35026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.