A note on Schrödinger operators with polynomial potentials

Jacek Dziubański

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 1, page 149-161
  • ISSN: 0010-1354

How to cite

top

Dziubański, Jacek. "A note on Schrödinger operators with polynomial potentials." Colloquium Mathematicae 78.1 (1998): 149-161. <http://eudml.org/doc/210599>.

@article{Dziubański1998,
author = {Dziubański, Jacek},
journal = {Colloquium Mathematicae},
keywords = {polynomial potentials; homogeneous groups; Schrödinger operator; Rockland's condition; Calderón-Zygmund operator},
language = {eng},
number = {1},
pages = {149-161},
title = {A note on Schrödinger operators with polynomial potentials},
url = {http://eudml.org/doc/210599},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Dziubański, Jacek
TI - A note on Schrödinger operators with polynomial potentials
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 149
EP - 161
LA - eng
KW - polynomial potentials; homogeneous groups; Schrödinger operator; Rockland's condition; Calderón-Zygmund operator
UR - http://eudml.org/doc/210599
ER -

References

top
  1. [D] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. Zbl0711.43003
  2. [D1] J. Dziubański, Schwartz spaces associated with some non-differential convolution operators on homogeneous groups, ibid. 63 (1992), 153-161. 
  3. [DHJ] J. Dziubański, A. Hulanicki and J. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, ibid. 68 (1995), 7-16. Zbl0837.43012
  4. [E] J. Epperson, Triebel-Lizorkin spaces for Hermite expansions, Studia Math. 114 (1995), 87-103. Zbl0828.42017
  5. [FeS] C. Fefferman and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. Zbl0222.26019
  6. [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
  7. [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
  8. [G1] P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114. Zbl0737.43002
  9. [He] W. Hebisch, On operators satisfying the Rockland condition, ibid. 131 (1998), 63-71. 
  10. [P] J. Peetre, On space of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. Zbl0302.46021
  11. [Sh] Z. Shen, L p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. Zbl0818.35021
  12. [Z] J. Zhong, Harmonic analysis for some Schrödinger operators, Ph.D. thesis, Princeton Univ., 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.