# A note on Schrödinger operators with polynomial potentials

Colloquium Mathematicae (1998)

- Volume: 78, Issue: 1, page 149-161
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topDziubański, Jacek. "A note on Schrödinger operators with polynomial potentials." Colloquium Mathematicae 78.1 (1998): 149-161. <http://eudml.org/doc/210599>.

@article{Dziubański1998,

author = {Dziubański, Jacek},

journal = {Colloquium Mathematicae},

keywords = {polynomial potentials; homogeneous groups; Schrödinger operator; Rockland's condition; Calderón-Zygmund operator},

language = {eng},

number = {1},

pages = {149-161},

title = {A note on Schrödinger operators with polynomial potentials},

url = {http://eudml.org/doc/210599},

volume = {78},

year = {1998},

}

TY - JOUR

AU - Dziubański, Jacek

TI - A note on Schrödinger operators with polynomial potentials

JO - Colloquium Mathematicae

PY - 1998

VL - 78

IS - 1

SP - 149

EP - 161

LA - eng

KW - polynomial potentials; homogeneous groups; Schrödinger operator; Rockland's condition; Calderón-Zygmund operator

UR - http://eudml.org/doc/210599

ER -

## References

top- [D] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. Zbl0711.43003
- [D1] J. Dziubański, Schwartz spaces associated with some non-differential convolution operators on homogeneous groups, ibid. 63 (1992), 153-161.
- [DHJ] J. Dziubański, A. Hulanicki and J. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, ibid. 68 (1995), 7-16. Zbl0837.43012
- [E] J. Epperson, Triebel-Lizorkin spaces for Hermite expansions, Studia Math. 114 (1995), 87-103. Zbl0828.42017
- [FeS] C. Fefferman and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. Zbl0222.26019
- [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
- [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
- [G1] P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114. Zbl0737.43002
- [He] W. Hebisch, On operators satisfying the Rockland condition, ibid. 131 (1998), 63-71.
- [P] J. Peetre, On space of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. Zbl0302.46021
- [Sh] Z. Shen, ${L}^{p}$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. Zbl0818.35021
- [Z] J. Zhong, Harmonic analysis for some Schrödinger operators, Ph.D. thesis, Princeton Univ., 1993.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.