# Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators

Studia Mathematica (1998)

- Volume: 131, Issue: 2, page 179-188
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topBlower, G.. "Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators." Studia Mathematica 131.2 (1998): 179-188. <http://eudml.org/doc/216574>.

@article{Blower1998,

abstract = {We obtain a sufficient condition on a B(H)-valued function φ for the operator $⨍ ↦ Γ_φ ⨍^\{\prime \}(S)$ to be completely bounded on $H^∞ B(H)$; the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which $(1-r) ||⨍^\{\prime \}(re^\{iθ\})||^2_\{B(H)\} rdrdθ$ and $(1-r) ||⨍"(re^\{iθ\})||_\{B(H)\} rdrdθ$ are Carleson measures, then ⨍ multiplies $(H^1c^1)^\{\prime \}$ to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map $⨍ ↦ Γ_φ ⨍^\{\prime \}(S)$ is bounded $A → B(H^2(H), L^2(H) ⊖ H^2(H))$. Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.},

author = {Blower, G.},

journal = {Studia Mathematica},

keywords = {polynomially bounded operators; Hankel operators; multipliers; Carleson measures; completely bounded; Foiaş-Williams-Peller operator; functional calculus},

language = {eng},

number = {2},

pages = {179-188},

title = {Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators},

url = {http://eudml.org/doc/216574},

volume = {131},

year = {1998},

}

TY - JOUR

AU - Blower, G.

TI - Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators

JO - Studia Mathematica

PY - 1998

VL - 131

IS - 2

SP - 179

EP - 188

AB - We obtain a sufficient condition on a B(H)-valued function φ for the operator $⨍ ↦ Γ_φ ⨍^{\prime }(S)$ to be completely bounded on $H^∞ B(H)$; the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which $(1-r) ||⨍^{\prime }(re^{iθ})||^2_{B(H)} rdrdθ$ and $(1-r) ||⨍"(re^{iθ})||_{B(H)} rdrdθ$ are Carleson measures, then ⨍ multiplies $(H^1c^1)^{\prime }$ to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map $⨍ ↦ Γ_φ ⨍^{\prime }(S)$ is bounded $A → B(H^2(H), L^2(H) ⊖ H^2(H))$. Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.

LA - eng

KW - polynomially bounded operators; Hankel operators; multipliers; Carleson measures; completely bounded; Foiaş-Williams-Peller operator; functional calculus

UR - http://eudml.org/doc/216574

ER -

## References

top- [1] O. Blasco, On the area function for H(σ _p), 1≤ p≤ 2, Bull. Polish Acad. Sci. Math. 44 (1996), 285-292. Zbl0893.46025
- [2] G. Blower, Quadratic integrals and factorization of linear operators, J. London Math. Soc. (2) 56 (1997), 333-346.
- [3] J. Bourgain, On the similarity problem for polynomially bounded operators on Hilbert space, Israel J. Math. 54 (1986), 227-241. Zbl0631.47008
- [4] J. Bourgain, Vector-valued singular integrals and the ${H}^{1}$-BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczy/nski (eds.), Marcel Dekker, New York, 1986, 1-19.
- [5] K. R. Davidson and V. I. Paulsen, Polynomially bounded operators, J. Reine Angew. Math. 487 (1997), 153-170. Zbl0890.47013
- [6] E. G. Effros and Z.-J. Ruan, On matricially normed spaces, Pacific J. Math. 132 (1988), 243-264. Zbl0686.46012
- [7] C. Foiaş and J. P. Williams, On a class of polynomially bounded operators, preprint.
- [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
- [9] S. Parrott, On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem, J. Funct. Anal. 30 (1978), 311-328. Zbl0409.47004
- [10] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, ibid. 55 (1984), 1-17. Zbl0557.46035
- [11] V. V. Peller, Estimates of functions of Hilbert space operators, similarity to a contraction and related function algebras, in: Linear and Complex Analysis Problem Book, V. P. Havin [V. P. Khavin], S. V. Hruščëv [S. V. Khrushchëv] and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1043, Springer, Berlin, 1984, 199-204.
- [12] G. Pisier, Factorization of operator valued analytic functions, Adv. Math. 93 (1992), 61-125. Zbl0791.47015
- [13] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, Berlin, 1995.
- [14] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. 10 (1997), 351-369. Zbl0869.47014