The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators”

The Marcinkiewicz multiplier condition for bilinear operators

Loukas Grafakos, Nigel J. Kalton (2001)

Studia Mathematica

Similarity:

This article is concerned with the question of whether Marcinkiewicz multipliers on 2 n give rise to bilinear multipliers on ℝⁿ × ℝⁿ. We show that this is not always the case. Moreover, we find necessary and sufficient conditions for such bilinear multipliers to be bounded. These conditions in particular imply that a slight logarithmic modification of the Marcinkiewicz condition gives multipliers for which the corresponding bilinear operators are bounded on products of Lebesgue and Hardy...

Multipliers of the Hardy space H¹ and power bounded operators

Gilles Pisier (2001)

Colloquium Mathematicae

Similarity:

We study the space of functions φ: ℕ → ℂ such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that φ(n) = ⟨Tⁿξ,η⟩. This implies that the matrix ( φ ( i + j ) ) i , j 0 is a Schur multiplier of B(ℓ₂) or equivalently is in the space (ℓ₁ ⊗̌ ℓ₁)*. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H¹ which we call “shift-bounded”. We show that there is a φ which...

Multiplier transformations on H p spaces

Daning Chen, Dashan Fan (1998)

Studia Mathematica

Similarity:

The authors obtain some multiplier theorems on H p spaces analogous to the classical L p multiplier theorems of de Leeuw. The main result is that a multiplier operator ( T f ) ( x ) = λ ( x ) f ̂ ( x ) ( λ C ( n ) ) is bounded on H p ( n ) if and only if the restriction λ ( ε m ) m Λ is an H p ( T n ) bounded multiplier uniformly for ε>0, where Λ is the integer lattice in n .

Spherical summation : a problem of E.M. Stein

Antonio Cordoba, B. Lopez-Melero (1981)

Annales de l'institut Fourier

Similarity:

Writing ( T R λ f ) ^ ( ξ ) = ( 1 - | ξ | 2 / R 2 ) + λ f ^ ( ξ ) . E. Stein conjectured j | T R j λ f i | 2 1 / 2 p C j | f j | 2 1 / 2 p for λ > 0 , 4 3 p 4 and C = C λ , p . We prove this conjecture. We prove also f ( x ) = lim j T 2 j λ f ( x ) a.e. We only assume 4 3 + 2 λ < p < 4 1 - 2 λ .

Transference and restriction of maximal multiplier operators on Hardy spaces

Zhixin Liu, Shanzhen Lu (1993)

Studia Mathematica

Similarity:

The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces H p ( n ) and H p ( n ) , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an L ( n ) function m is a maximal multiplier on H p ( n ) if and only if it is a maximal multiplier on H p ( n ) . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered. ...

A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains

Michał Wojciechowski (2000)

Studia Mathematica

Similarity:

It is proved that if m : d satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the H 1 space on the product domain d 1 × . . . × d k . This implies an estimate of the norm N ( m , L p ( d ) of the multiplier transformation of m on L p ( d ) as p→1. Precisely we get N ( m , L p ( d ) ) ( p - 1 ) - k . This bound is the best possible in general.

Calderón-Zygmund operators acting on generalized Carleson measure spaces

Chin-Cheng Lin, Kunchuan Wang (2012)

Studia Mathematica

Similarity:

We study Calderón-Zygmund operators acting on generalized Carleson measure spaces C M O r α , q and show a necessary and sufficient condition for their boundedness. The spaces C M O r α , q are a generalization of BMO, and can be regarded as the duals of homogeneous Triebel-Lizorkin spaces as well.

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

Similarity:

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral...

Fourier coefficients of continuous functions and a class of multipliers

Serguei V. Kislyakov (1988)

Annales de l'institut Fourier

Similarity:

If x is a bounded function on Z , the multiplier with symbol x (denoted by M x ) is defined by ( M x f ) ^ = x f ^ , f L 2 ( T ) . We give some conditions on x ensuring the “interpolation inequality” M x f L p C f L 1 α M x f L q 1 - α (here 1 &lt; p &lt; q and α = α ( p , q , x ) is between 0 and 1). In most cases considered M x fails to have stronger L 1 -regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets E Z every positive sequence in 2 ( E ) can be majorized by the sequence { | f ^ ( n ) | } n E for some continuous funtion f with spectrum...

ω-Calderón-Zygmund operators

Sijue Wu (1995)

Studia Mathematica

Similarity:

We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when ω A .

Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates

Peng Chen (2013)

Colloquium Mathematicae

Similarity:

We consider an abstract non-negative self-adjoint operator L acting on L²(X) which satisfies Davies-Gaffney estimates. Let H L p ( X ) (p > 0) be the Hardy spaces associated to the operator L. We assume that the doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on H L p ( X ) follows from restriction-type estimates and Davies-Gaffney estimates. We also establish a sharp result for the boundedness of Bochner-Riesz means on H L p ( X ) . ...

The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part

Min Hu, Dinghuai Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

A version of the John-Nirenberg inequality suitable for the functions b BMO with b - L is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.

Multipliers for the twisted Laplacian

E. K. Narayanan (2003)

Colloquium Mathematicae

Similarity:

We study ¹ - L p boundedness of certain multiplier transforms associated to the special Hermite operator.

Two problems of Calderón-Zygmund theory on product-spaces

Jean-Lin Journé (1988)

Annales de l'institut Fourier

Similarity:

R. Fefferman has shown that, on a product-space with two factors, an operator T bounded on L 2 maps L into BMO of the product if the mean oscillation on a rectangle R of the image of a bounded function supported out of a multiple R’ of R, is dominated by C | R | s | R | - s , for some s &gt; 0 . We show that this result does not extend in general to the case where E has three or more factors but remains true in this case if in addition T is a convolution operator, provided s &gt; s 0 ( E ) . We also show that the Calderon-Coifman...

Fejér means of two-dimensional Fourier transforms on H p ( × )

Ferenc Weisz (1999)

Colloquium Mathematicae

Similarity:

The two-dimensional classical Hardy spaces H p ( × ) are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from H p ( × ) to L p ( 2 ) (1/2 < p ≤ ∞) and is of weak type ( H 1 ( × ) , L 1 ( 2 ) ) where the Hardy space H 1 ( × ) is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ H 1 ( × ) L l o g L ( 2 ) converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on H p ( × ) whenever 1/2 < p < ∞. Thus, in case f ∈ H p ( × ) , the...