A quasi-nilpotent operator with reflexive commutant, II

V. Müller; M. Zając

Studia Mathematica (1999)

  • Volume: 132, Issue: 2, page 173-177
  • ISSN: 0039-3223

Abstract

top
A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms | T n | converge to zero arbitrarily fast.

How to cite

top

Müller, V., and Zając, M.. "A quasi-nilpotent operator with reflexive commutant, II." Studia Mathematica 132.2 (1999): 173-177. <http://eudml.org/doc/216593>.

@article{Müller1999,
abstract = {A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms $|T^n|$ converge to zero arbitrarily fast.},
author = {Müller, V., Zając, M.},
journal = {Studia Mathematica},
keywords = {quasinilpotent operator; commutant; reflexivity; quasi-nilpotent operator; reflexive commutant},
language = {eng},
number = {2},
pages = {173-177},
title = {A quasi-nilpotent operator with reflexive commutant, II},
url = {http://eudml.org/doc/216593},
volume = {132},
year = {1999},
}

TY - JOUR
AU - Müller, V.
AU - Zając, M.
TI - A quasi-nilpotent operator with reflexive commutant, II
JO - Studia Mathematica
PY - 1999
VL - 132
IS - 2
SP - 173
EP - 177
AB - A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms $|T^n|$ converge to zero arbitrarily fast.
LA - eng
KW - quasinilpotent operator; commutant; reflexivity; quasi-nilpotent operator; reflexive commutant
UR - http://eudml.org/doc/216593
ER -

References

top
  1. [1] Š. Drahovský and M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohem. 118 (1993), 249-254. Zbl0804.47007
  2. [2] D. Hadwin and E. A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), 181-197. Zbl0780.47032
  3. [3] D. A. Herrero, A dense set of operators with tiny commutants, Trans. Amer. Math. Soc. 327 (1991), 159-183. Zbl0675.41050
  4. [4] W. R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), 141-143. Zbl0473.47005
  5. [5] M. Zajac, A quasi-nilpotent operator with reflexive commutant, Studia Math. 118 (1996), 277-283. 
  6. [6] M. Zajac, Rate of convergence to zero of powers of an hyper-reflexive operator, in: Proceedings of Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control (Nemecká, 1997). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.