Hyperreflexive operators on finite dimensional Hilbert spaces

Štefan Drahovský; Michal Zajac

Mathematica Bohemica (1993)

  • Volume: 118, Issue: 3, page 249-254
  • ISSN: 0862-7959

Abstract

top
In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.

How to cite

top

Drahovský, Štefan, and Zajac, Michal. "Hyperreflexive operators on finite dimensional Hilbert spaces." Mathematica Bohemica 118.3 (1993): 249-254. <http://eudml.org/doc/29083>.

@article{Drahovský1993,
abstract = {In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.},
author = {Drahovský, Štefan, Zajac, Michal},
journal = {Mathematica Bohemica},
keywords = {commutant; reflexivity; hyperreflexive operators on finite dimensional Hilbert spaces; invariant subspace; commutant; reflexivity; hyperreflexive operators on finite dimensional Hilbert spaces},
language = {eng},
number = {3},
pages = {249-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hyperreflexive operators on finite dimensional Hilbert spaces},
url = {http://eudml.org/doc/29083},
volume = {118},
year = {1993},
}

TY - JOUR
AU - Drahovský, Štefan
AU - Zajac, Michal
TI - Hyperreflexive operators on finite dimensional Hilbert spaces
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 3
SP - 249
EP - 254
AB - In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.
LA - eng
KW - commutant; reflexivity; hyperreflexive operators on finite dimensional Hilbert spaces; invariant subspace; commutant; reflexivity; hyperreflexive operators on finite dimensional Hilbert spaces
UR - http://eudml.org/doc/29083
ER -

References

top
  1. Bercovici H., Operator Theory and Arithmetic in H , Mathemaical surveys and monographs 26, A.M.S. Providence, Rhode Island, 1988. (1988) MR0954383
  2. Bercovici H., Foiaş C., Sz.- Nagy B., Reflexive and hyper-reflexive operators of class C 0 , Acta Sci. Math. 43 (1981), 5-13. (1981) MR0621348
  3. Deddens J. A., Fillmore P. A., Reflexive Linear Transformations, Linear Algebra Appl. 10 (1975), 89-93. (1975) Zbl0301.15011MR0358390
  4. Fillmore P. A., Herrero, Domingo A., Longstaff W. E., The Hyperinvariant Subspace Lattice of a Linear Transformation, Linear Algebra Appl. 17 (1977), 125-132. (1977) Zbl0359.47005MR0470707
  5. Sz.-Nagy B., Foiaş, C, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam - Akadémiai Kiadó, Budapest, 1970. (1970) Zbl0201.45003MR0275190
  6. Zajac M., On the singular unitary part of a contraction, Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384. (1990) Zbl0723.47007MR1082520
  7. Horn R.A., Johnson C.R., Topics in Matrix Analysis, Cambridge University Press, 1991. (1991) Zbl0729.15001MR1091716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.