An oscillatory singular integral operator with polynomial phase
Studia Mathematica (1999)
- Volume: 133, Issue: 1, page 1-18
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topAlvarez, Josfina, and Hounie, Jorge. "An oscillatory singular integral operator with polynomial phase." Studia Mathematica 133.1 (1999): 1-18. <http://eudml.org/doc/216602>.
@article{Alvarez1999,
abstract = {We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space $H_P^1$ related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.},
author = {Alvarez, Josfina, Hounie, Jorge},
journal = {Studia Mathematica},
keywords = {oscillatory singular integral; Calderón-Zygmund kernel; atom; molecule; Hardy space; BMO; van der Corput lemma},
language = {eng},
number = {1},
pages = {1-18},
title = {An oscillatory singular integral operator with polynomial phase},
url = {http://eudml.org/doc/216602},
volume = {133},
year = {1999},
}
TY - JOUR
AU - Alvarez, Josfina
AU - Hounie, Jorge
TI - An oscillatory singular integral operator with polynomial phase
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 1
SP - 1
EP - 18
AB - We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space $H_P^1$ related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.
LA - eng
KW - oscillatory singular integral; Calderón-Zygmund kernel; atom; molecule; Hardy space; BMO; van der Corput lemma
UR - http://eudml.org/doc/216602
ER -
References
top- [1] J. Alvarez and M. Milman, continuity properties of Calderón-Zygmund operators, J. Math. Anal. Appl. 118 (1986), 63-79. Zbl0596.42006
- [2] S. Chanillo and M. Christ, Weak(1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
- [3] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1979). Zbl0483.35082
- [4] G. David and J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
- [5] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
- [6] D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15. Zbl0537.43005
- [7] Y. Hu, Weighted estimates for oscillatory integrals, in: Lecture Notes in Math. 1494, Springer, 1991, 73-81.
- [8] Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156. Zbl0808.42009
- [9] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. Zbl0779.42007
- [10] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. Zbl0728.42013
- [11] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
- [12] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
- [13] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 1986, 307-355.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.