An oscillatory singular integral operator with polynomial phase

Josfina Alvarez; Jorge Hounie

Studia Mathematica (1999)

  • Volume: 133, Issue: 1, page 1-18
  • ISSN: 0039-3223

Abstract

top
We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space H P 1 related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.

How to cite

top

Alvarez, Josfina, and Hounie, Jorge. "An oscillatory singular integral operator with polynomial phase." Studia Mathematica 133.1 (1999): 1-18. <http://eudml.org/doc/216602>.

@article{Alvarez1999,
abstract = {We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space $H_P^1$ related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.},
author = {Alvarez, Josfina, Hounie, Jorge},
journal = {Studia Mathematica},
keywords = {oscillatory singular integral; Calderón-Zygmund kernel; atom; molecule; Hardy space; BMO; van der Corput lemma},
language = {eng},
number = {1},
pages = {1-18},
title = {An oscillatory singular integral operator with polynomial phase},
url = {http://eudml.org/doc/216602},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Alvarez, Josfina
AU - Hounie, Jorge
TI - An oscillatory singular integral operator with polynomial phase
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 1
SP - 1
EP - 18
AB - We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space $H_P^1$ related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.
LA - eng
KW - oscillatory singular integral; Calderón-Zygmund kernel; atom; molecule; Hardy space; BMO; van der Corput lemma
UR - http://eudml.org/doc/216602
ER -

References

top
  1. [1] J. Alvarez and M. Milman, H p continuity properties of Calderón-Zygmund operators, J. Math. Anal. Appl. 118 (1986), 63-79. Zbl0596.42006
  2. [2] S. Chanillo and M. Christ, Weak(1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
  3. [3] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1979). Zbl0483.35082
  4. [4] G. David and J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
  5. [5] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985. 
  6. [6] D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15. Zbl0537.43005
  7. [7] Y. Hu, Weighted L p estimates for oscillatory integrals, in: Lecture Notes in Math. 1494, Springer, 1991, 73-81. 
  8. [8] Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156. Zbl0808.42009
  9. [9] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. Zbl0779.42007
  10. [10] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. Zbl0728.42013
  11. [11] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
  12. [12] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  13. [13] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 1986, 307-355. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.