# On the directional entropy for ℤ²-actions on a Lebesgue space

Studia Mathematica (1999)

- Volume: 133, Issue: 1, page 39-51
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKamiński, B., and Park, K.. "On the directional entropy for ℤ²-actions on a Lebesgue space." Studia Mathematica 133.1 (1999): 39-51. <http://eudml.org/doc/216604>.

@article{Kamiński1999,

abstract = {We define the concept of directional entropy for arbitrary $ℤ^2$-actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.},

author = {Kamiński, B., Park, K.},

journal = {Studia Mathematica},

keywords = {directional entropy; -actions; Kolmogorov-Sinai theorem},

language = {eng},

number = {1},

pages = {39-51},

title = {On the directional entropy for ℤ²-actions on a Lebesgue space},

url = {http://eudml.org/doc/216604},

volume = {133},

year = {1999},

}

TY - JOUR

AU - Kamiński, B.

AU - Park, K.

TI - On the directional entropy for ℤ²-actions on a Lebesgue space

JO - Studia Mathematica

PY - 1999

VL - 133

IS - 1

SP - 39

EP - 51

AB - We define the concept of directional entropy for arbitrary $ℤ^2$-actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.

LA - eng

KW - directional entropy; -actions; Kolmogorov-Sinai theorem

UR - http://eudml.org/doc/216604

ER -

## References

top- [1] R. M. Belinskaya, Entropy of a piecewise-power skew product, Izv. Vyssh. Uchebn. Zaved. Mat. 1974, no. 3, 12-17 (in Russian).
- [2] M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), 55-102. Zbl0863.54034
- [3] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30. Zbl0261.28015
- [4] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
- [5] I. Filipowicz, Rank, covering number and the spectral multiplicity function for ${\mathbb{Z}}^{d}$-actions, thesis, Toru/n, 1996.
- [6] A. A. Gura, On ergodic dynamical systems with point spectrum and commutative time, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 21 (1966), no. 4, 92-95 (in Russian).
- [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970. Zbl0213.40103
- [8] J. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, in: Studies in Probability and Ergodic Theory, Adv. Math. Suppl. Stud. 2, Academic Press, 1978, 251-267.
- [9] E. Krug, Folgenentropie für abelsche Gruppen von Automorphismen, thesis, Nürnberg 1973.
- [10] J. Milnor, Directional entropies of cellular automaton-maps, in: Disordered Systems and Biological Organization, NATO Adv. Sci. Inst. Ser. F 20, Springer, 1986, 113-115. Zbl1330.37015
- [11] J. Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), 357-386. Zbl0672.68025
- [12] D. Newton, On the entropy of certain classes of skew product transformations, Proc. Amer. Math. Soc. 21 (1969), 722-726. Zbl0174.09201
- [13] K. K. Park, Continuity of directional entropy for a class of ${\mathbb{Z}}^{2}$-actions, J. Korean Math. Soc. 32 (1995), 573-582. Zbl0847.28007
- [14] K. K. Park, Entropy of a skew product with a ${\mathbb{Z}}^{2}$-action, Pacific J. Math. 172 (1996), 227-241. Zbl0868.28011
- [15] K. K. Park, A counter-example of the entropy of a skew product, Indag. Math., to appear.
- [16] K. K. Park, On directional entropy functions, Israel J. Math., to appear. Zbl0937.37003
- [17] P. Walters, Some invariant σ-algebras for measure preserving transformations, Trans. Amer. Math. Soc. 163 (1972), 357-368. Zbl0227.28011
- [18] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982. Zbl0475.28009