On the directional entropy for ℤ²-actions on a Lebesgue space

B. Kamiński; K. Park

Studia Mathematica (1999)

  • Volume: 133, Issue: 1, page 39-51
  • ISSN: 0039-3223

Abstract

top
We define the concept of directional entropy for arbitrary 2 -actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.

How to cite

top

Kamiński, B., and Park, K.. "On the directional entropy for ℤ²-actions on a Lebesgue space." Studia Mathematica 133.1 (1999): 39-51. <http://eudml.org/doc/216604>.

@article{Kamiński1999,
abstract = {We define the concept of directional entropy for arbitrary $ℤ^2$-actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.},
author = {Kamiński, B., Park, K.},
journal = {Studia Mathematica},
keywords = {directional entropy; -actions; Kolmogorov-Sinai theorem},
language = {eng},
number = {1},
pages = {39-51},
title = {On the directional entropy for ℤ²-actions on a Lebesgue space},
url = {http://eudml.org/doc/216604},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Kamiński, B.
AU - Park, K.
TI - On the directional entropy for ℤ²-actions on a Lebesgue space
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 1
SP - 39
EP - 51
AB - We define the concept of directional entropy for arbitrary $ℤ^2$-actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.
LA - eng
KW - directional entropy; -actions; Kolmogorov-Sinai theorem
UR - http://eudml.org/doc/216604
ER -

References

top
  1. [1] R. M. Belinskaya, Entropy of a piecewise-power skew product, Izv. Vyssh. Uchebn. Zaved. Mat. 1974, no. 3, 12-17 (in Russian). 
  2. [2] M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), 55-102. Zbl0863.54034
  3. [3] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30. Zbl0261.28015
  4. [4] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982. 
  5. [5] I. Filipowicz, Rank, covering number and the spectral multiplicity function for d -actions, thesis, Toru/n, 1996. 
  6. [6] A. A. Gura, On ergodic dynamical systems with point spectrum and commutative time, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 21 (1966), no. 4, 92-95 (in Russian). 
  7. [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970. Zbl0213.40103
  8. [8] J. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, in: Studies in Probability and Ergodic Theory, Adv. Math. Suppl. Stud. 2, Academic Press, 1978, 251-267. 
  9. [9] E. Krug, Folgenentropie für abelsche Gruppen von Automorphismen, thesis, Nürnberg 1973. 
  10. [10] J. Milnor, Directional entropies of cellular automaton-maps, in: Disordered Systems and Biological Organization, NATO Adv. Sci. Inst. Ser. F 20, Springer, 1986, 113-115. Zbl1330.37015
  11. [11] J. Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), 357-386. Zbl0672.68025
  12. [12] D. Newton, On the entropy of certain classes of skew product transformations, Proc. Amer. Math. Soc. 21 (1969), 722-726. Zbl0174.09201
  13. [13] K. K. Park, Continuity of directional entropy for a class of 2 -actions, J. Korean Math. Soc. 32 (1995), 573-582. Zbl0847.28007
  14. [14] K. K. Park, Entropy of a skew product with a 2 -action, Pacific J. Math. 172 (1996), 227-241. Zbl0868.28011
  15. [15] K. K. Park, A counter-example of the entropy of a skew product, Indag. Math., to appear. 
  16. [16] K. K. Park, On directional entropy functions, Israel J. Math., to appear. Zbl0937.37003
  17. [17] P. Walters, Some invariant σ-algebras for measure preserving transformations, Trans. Amer. Math. Soc. 163 (1972), 357-368. Zbl0227.28011
  18. [18] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982. Zbl0475.28009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.