An almost nowhere Fréchet smooth norm on superreflexive spaces

Eva Matoušková

Studia Mathematica (1999)

  • Volume: 133, Issue: 1, page 93-99
  • ISSN: 0039-3223

Abstract

top
Every separable infinite-dimensional superreflexive Banach space admits an equivalent norm which is Fréchet differentiable only on an Aronszajn null set.

How to cite

top

Matoušková, Eva. "An almost nowhere Fréchet smooth norm on superreflexive spaces." Studia Mathematica 133.1 (1999): 93-99. <http://eudml.org/doc/216606>.

@article{Matoušková1999,
abstract = {Every separable infinite-dimensional superreflexive Banach space admits an equivalent norm which is Fréchet differentiable only on an Aronszajn null set.},
author = {Matoušková, Eva},
journal = {Studia Mathematica},
keywords = {Aronszajn null; convex; differentiable; Banach space; convex function; equivalent norm; Fréchet differentiable; superreflexive space; sparseness; Gateaux differentiability; Lipschitz function; superrefexive Banach space},
language = {eng},
number = {1},
pages = {93-99},
title = {An almost nowhere Fréchet smooth norm on superreflexive spaces},
url = {http://eudml.org/doc/216606},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Matoušková, Eva
TI - An almost nowhere Fréchet smooth norm on superreflexive spaces
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 1
SP - 93
EP - 99
AB - Every separable infinite-dimensional superreflexive Banach space admits an equivalent norm which is Fréchet differentiable only on an Aronszajn null set.
LA - eng
KW - Aronszajn null; convex; differentiable; Banach space; convex function; equivalent norm; Fréchet differentiable; superreflexive space; sparseness; Gateaux differentiability; Lipschitz function; superrefexive Banach space
UR - http://eudml.org/doc/216606
ER -

References

top
  1. [A] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. Zbl0342.46034
  2. [BL] Y. Benyamini and J. Lindenstrauss, Geometric non-linear functional analysis, to appear. Zbl0946.46002
  3. [C] M. Csörnyei, Aronszajn null and Gaussian null sets coincide, to appear. Zbl0952.46030
  4. [D] J. Diestel, Geometry of Banach Spaces, Springer, Berlin, 1975. Zbl0307.46009
  5. [K] P. L. Konyagin, On points of existence and nonuniqueness of elements of best approximation, in: Theory of Functions and its Applications, P. L. Ul'yanov (ed.), Izdat. Moskov. Univ., 1986, 38-43 (in Russian). 
  6. [Man] P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29. Zbl0219.46006
  7. [MM] J. Matoušek and E. Matoušková, A highly non-smooth norm on Hilbert space, Israel J. Math., to appear. Zbl0935.46012
  8. [M1] E. Matoušková, Convexity and Haar null sets, Proc. Amer. Math. Soc. 125 (1997), 1793-1799. Zbl0871.46005
  9. [M2] E. Matoušková, The Banach-Saks property and Haar null sets, Comment. Math. Univ. Carolin. 39 (1998), 71-80. Zbl0937.46011
  10. [PT] D. Preiss and J. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), J. Lindenstrauss and V. Milman (eds.), Birkhäuser, 1995, 219-238. Zbl0872.46026
  11. [PZ] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Suppl. Rend. Circ. Mat. Palermo (2) 3 (1984), 219-223. Zbl0547.46026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.