An almost nowhere Fréchet smooth norm on superreflexive spaces
Studia Mathematica (1999)
- Volume: 133, Issue: 1, page 93-99
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. Zbl0342.46034
- [BL] Y. Benyamini and J. Lindenstrauss, Geometric non-linear functional analysis, to appear. Zbl0946.46002
- [C] M. Csörnyei, Aronszajn null and Gaussian null sets coincide, to appear. Zbl0952.46030
- [D] J. Diestel, Geometry of Banach Spaces, Springer, Berlin, 1975. Zbl0307.46009
- [K] P. L. Konyagin, On points of existence and nonuniqueness of elements of best approximation, in: Theory of Functions and its Applications, P. L. Ul'yanov (ed.), Izdat. Moskov. Univ., 1986, 38-43 (in Russian).
- [Man] P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29. Zbl0219.46006
- [MM] J. Matoušek and E. Matoušková, A highly non-smooth norm on Hilbert space, Israel J. Math., to appear. Zbl0935.46012
- [M1] E. Matoušková, Convexity and Haar null sets, Proc. Amer. Math. Soc. 125 (1997), 1793-1799. Zbl0871.46005
- [M2] E. Matoušková, The Banach-Saks property and Haar null sets, Comment. Math. Univ. Carolin. 39 (1998), 71-80. Zbl0937.46011
- [PT] D. Preiss and J. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), J. Lindenstrauss and V. Milman (eds.), Birkhäuser, 1995, 219-238. Zbl0872.46026
- [PZ] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Suppl. Rend. Circ. Mat. Palermo (2) 3 (1984), 219-223. Zbl0547.46026