The Banach-Saks property and Haar null sets
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 1, page 71-80
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMatoušková, Eva. "The Banach-Saks property and Haar null sets." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 71-80. <http://eudml.org/doc/248269>.
@article{Matoušková1998,
abstract = {A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space $X$ has the Banach-Saks property, then closed and convex subsets of $X$ with empty interior are Haar null.},
author = {Matoušková, Eva},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach space; convexity; Haar null set; Banach space; convexity; Haar null set},
language = {eng},
number = {1},
pages = {71-80},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Banach-Saks property and Haar null sets},
url = {http://eudml.org/doc/248269},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Matoušková, Eva
TI - The Banach-Saks property and Haar null sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 71
EP - 80
AB - A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space $X$ has the Banach-Saks property, then closed and convex subsets of $X$ with empty interior are Haar null.
LA - eng
KW - Banach space; convexity; Haar null set; Banach space; convexity; Haar null set
UR - http://eudml.org/doc/248269
ER -
References
top- Aronszajn N., Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. LVII (1976), 147-190. (1976) Zbl0342.46034MR0425608
- Baernstein A., On reflexivity and summability, Studia Math. 42 (1972), 91-94. (1972) Zbl0228.46014MR0305044
- Beauzamy B., Lapreste J.T., Modèles étalés des espaces de Banach, Travaux en cours, Hermann, Paris, 1984. Zbl0553.46012MR0770062
- Bessaga C., Pelczynski A., Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001MR0478168
- Christensen J.P.R., Topology and Borel Structure, North-Holland, Amsterdam, 1974. Zbl0273.28001MR0348724
- Guerre-Delabrière S., Classical Sequences in Banach Spaces, Marcel Dekker, New York, 1992. MR1197117
- Hunt B.R., The prevalence of continuous nowhere differentiable functions, Proc. Amer. Math. Soc. 122 (1994), 711-717. (1994) Zbl0861.26003MR1260170
- Hunt B.R., Sauer T., Yorke J.A., Prevalence: A translation-invariant ``almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217-238. (1992) MR1161274
- Lindenstrauss J., Tzafriri L., Clasical Banach Spaces I., Springer-Verlag, Berlin, 1977. MR0500056
- Matoušková E., Convexity and Haar null sets, Proc. Amer. Math. Soc. 125 6 (1997), 1793-1799. (1997) MR1372040
- Matoušková E., Stegall C., A characterization of reflexive Banach spaces, Proc. Amer. Math. Soc 124 4 (1996), 1083-1090. (1996) MR1301517
- Mycielski J., Some unsolved problems on the prevalence of ergodicity, instability, and algebraic independence, Ulam Quarterly, vol 1, no. 3 (1992), 30-37. Zbl0846.28006MR1208681
- Parthasarathy K.R., Probability Measures on Metric Spaces, Academic Press, New York, 1967. MR0226684
- Solecki S., On Haar null sets, Fundam. Math. 149 (1996), 205-210. (1996) Zbl0887.28006MR1383206
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.