The Banach-Saks property and Haar null sets

Eva Matoušková

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 1, page 71-80
  • ISSN: 0010-2628

Abstract

top
A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space X has the Banach-Saks property, then closed and convex subsets of X with empty interior are Haar null.

How to cite

top

Matoušková, Eva. "The Banach-Saks property and Haar null sets." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 71-80. <http://eudml.org/doc/248269>.

@article{Matoušková1998,
abstract = {A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space $X$ has the Banach-Saks property, then closed and convex subsets of $X$ with empty interior are Haar null.},
author = {Matoušková, Eva},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach space; convexity; Haar null set; Banach space; convexity; Haar null set},
language = {eng},
number = {1},
pages = {71-80},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Banach-Saks property and Haar null sets},
url = {http://eudml.org/doc/248269},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Matoušková, Eva
TI - The Banach-Saks property and Haar null sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 71
EP - 80
AB - A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space $X$ has the Banach-Saks property, then closed and convex subsets of $X$ with empty interior are Haar null.
LA - eng
KW - Banach space; convexity; Haar null set; Banach space; convexity; Haar null set
UR - http://eudml.org/doc/248269
ER -

References

top
  1. Aronszajn N., Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. LVII (1976), 147-190. (1976) Zbl0342.46034MR0425608
  2. Baernstein A., On reflexivity and summability, Studia Math. 42 (1972), 91-94. (1972) Zbl0228.46014MR0305044
  3. Beauzamy B., Lapreste J.T., Modèles étalés des espaces de Banach, Travaux en cours, Hermann, Paris, 1984. Zbl0553.46012MR0770062
  4. Bessaga C., Pelczynski A., Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001MR0478168
  5. Christensen J.P.R., Topology and Borel Structure, North-Holland, Amsterdam, 1974. Zbl0273.28001MR0348724
  6. Guerre-Delabrière S., Classical Sequences in Banach Spaces, Marcel Dekker, New York, 1992. MR1197117
  7. Hunt B.R., The prevalence of continuous nowhere differentiable functions, Proc. Amer. Math. Soc. 122 (1994), 711-717. (1994) Zbl0861.26003MR1260170
  8. Hunt B.R., Sauer T., Yorke J.A., Prevalence: A translation-invariant ``almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217-238. (1992) MR1161274
  9. Lindenstrauss J., Tzafriri L., Clasical Banach Spaces I., Springer-Verlag, Berlin, 1977. MR0500056
  10. Matoušková E., Convexity and Haar null sets, Proc. Amer. Math. Soc. 125 6 (1997), 1793-1799. (1997) MR1372040
  11. Matoušková E., Stegall C., A characterization of reflexive Banach spaces, Proc. Amer. Math. Soc 124 4 (1996), 1083-1090. (1996) MR1301517
  12. Mycielski J., Some unsolved problems on the prevalence of ergodicity, instability, and algebraic independence, Ulam Quarterly, vol 1, no. 3 (1992), 30-37. Zbl0846.28006MR1208681
  13. Parthasarathy K.R., Probability Measures on Metric Spaces, Academic Press, New York, 1967. MR0226684
  14. Solecki S., On Haar null sets, Fundam. Math. 149 (1996), 205-210. (1996) Zbl0887.28006MR1383206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.