A class of -preduals which are isomorphic to quotients of
Studia Mathematica (1999)
- Volume: 133, Issue: 2, page 131-143
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGasparis, Ioannis. "A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$." Studia Mathematica 133.2 (1999): 131-143. <http://eudml.org/doc/216609>.
@article{Gasparis1999,
author = {Gasparis, Ioannis},
journal = {Studia Mathematica},
keywords = {spaces of continuous functions; countable compact spaces; $l_1$-preduals; -spaces; compact interval of ordinals; order topology; countable compact metric space; -predual},
language = {eng},
number = {2},
pages = {131-143},
title = {A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$},
url = {http://eudml.org/doc/216609},
volume = {133},
year = {1999},
}
TY - JOUR
AU - Gasparis, Ioannis
TI - A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 2
SP - 131
EP - 143
LA - eng
KW - spaces of continuous functions; countable compact spaces; $l_1$-preduals; -spaces; compact interval of ordinals; order topology; countable compact metric space; -predual
UR - http://eudml.org/doc/216609
ER -
References
top- [1] D. E. Alspach, A quotient of which is not isomorphic to a subspace of C(α), , Israel J. Math. 33 (1980), 49-60.
- [2] D. E. Alspach, A -predual which is not isometric to a quotient of C(α), in: Contemp. Math. 144, Amer. Math. Soc., 1993, 9-14. Zbl0796.46004
- [3] D. E. Alspach and Y. Benyamini, A geometrical property of C(K) spaces, Israel J. Math. 64 (1988), 179-194. Zbl0687.46013
- [4] Y. Benyamini, An extension theorem for separable Banach spaces, ibid. 29 (1978), 24-30.
- [5] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62.
- [6] C. Bessaga and A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264. Zbl0145.16102
- [7] I. Gasparis, Dissertation, The University of Texas, 1995.
- [8] W. B. Johnson and M. Zippin, On subspaces of quotients of and , Israel J. Math. 13 (1972), 311-316.
- [9] A. Lazar and J. Lindenstrauss, On Banach spaces whose duals are spaces and their representing matrices, Acta Math. 126 (1971), 165-194. Zbl0209.43201
- [10] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. Zbl47.0176.01
- [11] H. P. Rosenthal, On factors of C[0,1] with non-separable dual, Israel J. Math. 13 (1972), 361-378.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.