# A class of ${l}^{1}$-preduals which are isomorphic to quotients of $C\left({\omega}^{\omega}\right)$

Studia Mathematica (1999)

- Volume: 133, Issue: 2, page 131-143
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topGasparis, Ioannis. "A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$." Studia Mathematica 133.2 (1999): 131-143. <http://eudml.org/doc/216609>.

@article{Gasparis1999,

author = {Gasparis, Ioannis},

journal = {Studia Mathematica},

keywords = {spaces of continuous functions; countable compact spaces; $l_1$-preduals; -spaces; compact interval of ordinals; order topology; countable compact metric space; -predual},

language = {eng},

number = {2},

pages = {131-143},

title = {A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$},

url = {http://eudml.org/doc/216609},

volume = {133},

year = {1999},

}

TY - JOUR

AU - Gasparis, Ioannis

TI - A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$

JO - Studia Mathematica

PY - 1999

VL - 133

IS - 2

SP - 131

EP - 143

LA - eng

KW - spaces of continuous functions; countable compact spaces; $l_1$-preduals; -spaces; compact interval of ordinals; order topology; countable compact metric space; -predual

UR - http://eudml.org/doc/216609

ER -

## References

top- [1] D. E. Alspach, A quotient of $C\left({\omega}^{\omega}\right)$ which is not isomorphic to a subspace of C(α), $\alpha <{\omega}_{1}$, Israel J. Math. 33 (1980), 49-60.
- [2] D. E. Alspach, A ${l}_{1}$-predual which is not isometric to a quotient of C(α), in: Contemp. Math. 144, Amer. Math. Soc., 1993, 9-14. Zbl0796.46004
- [3] D. E. Alspach and Y. Benyamini, A geometrical property of C(K) spaces, Israel J. Math. 64 (1988), 179-194. Zbl0687.46013
- [4] Y. Benyamini, An extension theorem for separable Banach spaces, ibid. 29 (1978), 24-30.
- [5] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62.
- [6] C. Bessaga and A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264. Zbl0145.16102
- [7] I. Gasparis, Dissertation, The University of Texas, 1995.
- [8] W. B. Johnson and M. Zippin, On subspaces of quotients of ${\left(\sum {G}_{n}\right)}_{l}p$ and ${\left(\sum {G}_{n}\right)}_{c}0$, Israel J. Math. 13 (1972), 311-316.
- [9] A. Lazar and J. Lindenstrauss, On Banach spaces whose duals are ${L}_{1}$ spaces and their representing matrices, Acta Math. 126 (1971), 165-194. Zbl0209.43201
- [10] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. Zbl47.0176.01
- [11] H. P. Rosenthal, On factors of C[0,1] with non-separable dual, Israel J. Math. 13 (1972), 361-378.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.