# Spaces of continuous functions (IV). (On isomorphical classification of spaces of continuous functions).

Studia Mathematica (1960)

- Volume: 19, Issue: 1, page 53-62
- ISSN: 0039-3223

## Access Full Article

top## How to cite

topBessaga, C., and Pełczyński, A.. "Spaces of continuous functions (IV). (On isomorphical classification of spaces of continuous functions).." Studia Mathematica 19.1 (1960): 53-62. <http://eudml.org/doc/216968>.

@article{Bessaga1960,

author = {Bessaga, C., Pełczyński, A.},

journal = {Studia Mathematica},

keywords = {functional analysis},

language = {eng},

number = {1},

pages = {53-62},

title = {Spaces of continuous functions (IV). (On isomorphical classification of spaces of continuous functions).},

url = {http://eudml.org/doc/216968},

volume = {19},

year = {1960},

}

TY - JOUR

AU - Bessaga, C.

AU - Pełczyński, A.

TI - Spaces of continuous functions (IV). (On isomorphical classification of spaces of continuous functions).

JO - Studia Mathematica

PY - 1960

VL - 19

IS - 1

SP - 53

EP - 62

LA - eng

KW - functional analysis

UR - http://eudml.org/doc/216968

ER -

## Citations in EuDML Documents

top- Jan Baars, Joost de Groot, An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces
- Ioannis Gasparis, A class of ${l}^{1}$-preduals which are isomorphic to quotients of $C\left({\omega}^{\omega}\right)$
- Rafael Villa, Isometric embedding into spaces of continuous functions
- Yves Dutrieux, Lipschitz-quotients and the Kunen-Martin Theorem
- P. Billard, Primarité des espaces $C\left(\alpha \right)$ ($\alpha $ ordinal infini $\<{\omega}_{1}=$ premier ordinal non dénombrable)
- W. Johnson, M. Zippin, Extension of operators from weak*-closed sub-spaces of ${l}_{1}$ into C(K) spaces
- Dale Alspach, Operators on C(ω^α) which do not preserve C(ω^α)
- J. Van Mill, Topological equivalence of certain function spaces
- C. Samuel, Sur la reproductibilité des espaces ${l}_{p}$
- Henri Buchwalter, Espaces localement convexes semi-faibles

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.