Measures and lacunary sets

Pascal Lefèvre

Studia Mathematica (1999)

  • Volume: 133, Issue: 2, page 145-161
  • ISSN: 0039-3223

Abstract

top
We establish new connections between some classes of lacunary sets. The main tool is the use of (p,q)-summing or weakly compact operators (for Riesz sets). This point of view provides new properties of stationary sets and allows us to generalize to more general abelian groups than the torus some properties of p-Sidon sets. We also construct some new classes of Riesz sets.

How to cite

top

Lefèvre, Pascal. "Measures and lacunary sets." Studia Mathematica 133.2 (1999): 145-161. <http://eudml.org/doc/216610>.

@article{Lefèvre1999,
abstract = {We establish new connections between some classes of lacunary sets. The main tool is the use of (p,q)-summing or weakly compact operators (for Riesz sets). This point of view provides new properties of stationary sets and allows us to generalize to more general abelian groups than the torus some properties of p-Sidon sets. We also construct some new classes of Riesz sets.},
author = {Lefèvre, Pascal},
journal = {Studia Mathematica},
keywords = {stationary sets; p-Sidon sets; sets of continuity; Λ(1) sets; Riesz sets; random Fourier series; (p,q)-summing operators; -Sidon sets; sets; -summing operators; lacunary sets; Fourier multiplier},
language = {eng},
number = {2},
pages = {145-161},
title = {Measures and lacunary sets},
url = {http://eudml.org/doc/216610},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Lefèvre, Pascal
TI - Measures and lacunary sets
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 2
SP - 145
EP - 161
AB - We establish new connections between some classes of lacunary sets. The main tool is the use of (p,q)-summing or weakly compact operators (for Riesz sets). This point of view provides new properties of stationary sets and allows us to generalize to more general abelian groups than the torus some properties of p-Sidon sets. We also construct some new classes of Riesz sets.
LA - eng
KW - stationary sets; p-Sidon sets; sets of continuity; Λ(1) sets; Riesz sets; random Fourier series; (p,q)-summing operators; -Sidon sets; sets; -summing operators; lacunary sets; Fourier multiplier
UR - http://eudml.org/doc/216610
ER -

References

top
  1. [B-E] G. Bachelis and S. Ebenstein, On Λ(p) sets, Pacific J. Math. 54 (1974), 35-38. Zbl0304.43013
  2. [B] R. Blei, Sidon partitions and p-Sidon sets, ibid. 65 (1976), 307-313. Zbl0335.43008
  3. [Bo] J. Bourgain, Une remarque sur les ensembles stationnaires, Publ. Math. Orsay, exp. 2 (1981-82). 
  4. [B-P] M. Bożejko and T. Pytlik, Some types of lacunary series, Colloq. Math. 25 (1972), 117-124. Zbl0249.43013
  5. [D-G] M. Dechamps-Gondim, Sur les compacts associés aux ensembles lacunaires, les ensembles de Sidon et quelques problèmes ouverts, Publ. Math. Orsay 84-01 (1984). Zbl0537.43018
  6. [D] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984. 
  7. [D-J-T] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995. Zbl0855.47016
  8. [F-P] J. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math. 105 (1983), 115-141. Zbl0491.43006
  9. [Go] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331. Zbl0661.43003
  10. [G-S] G. Godefroy and P. Saab, Quelques espaces de Banach ayant les propriétés (V) ou (V*) de Pełczyński, C. R. Acad. Sci. Paris 303 (1986), 503-506. Zbl0602.46014
  11. [H-W-W] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993. 
  12. [He] E. Heard, A sequential F. and M. Riesz theorem, Proc. Amer. Math. Soc. 18 (1967), 832-835. Zbl0188.44803
  13. [K] J. P. Kahane, Some Random Series of Functions, Cambridge Stud. Adv. Math. 5, Cambridge Univ. Press, 1985. 
  14. [L1] P. Lefèvre, Sur les ensembles de convergence uniforme, Publ. Math. Orsay 94-24 (1994). 
  15. [L2] P. Lefèvre, On some properties of the class of stationary sets, Colloq. Math. 76 (1998), 1-18. Zbl0916.43005
  16. [L-R] J. M. López and K. A. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975. 
  17. [L-P] F. Lust-Piquard, Propriétés harmoniques et géométriques des sous-espaces invariants par translations de L ( G ) , thèse. Zbl0462.43006
  18. [L-P2] F. Lust-Piquard, Bohr local properties of C Λ ( G ) , Colloq. Math. 58 (1989), 29-38. 
  19. [M-P] M. B. Marcus and G. Pisier, Random Fourier Series with Application to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981. Zbl0474.43004
  20. [Me] Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99. Zbl0159.42501
  21. [P-1] G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, in: Sém. Géométrie des Espaces de Banach, Ecole Polytechnique, 1977-78. 
  22. [P-2] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726. 
  23. [S-T] P. M. Soardi and G. Travaglini, On sets of completely uniform convergence, Colloq. Math. 45 (1981), 317-320. Zbl0497.43004
  24. [W] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, 1991. Zbl0724.46012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.