Complexifications of real Banach spaces, polynomials and multilinear maps

Gustavo Muñoz; Yannis Sarantopoulos; Andrew Tonge

Studia Mathematica (1999)

  • Volume: 134, Issue: 1, page 1-33
  • ISSN: 0039-3223

Abstract

top
We give a unified treatment of procedures for complexifying real Banach spaces. These include several approaches used in the past. We obtain best possible results for comparison of the norms of real polynomials and multilinear mappings with the norms of their complex extensions. These estimates provide generalizations and show sharpness of previously obtained inequalities.

How to cite

top

Muñoz, Gustavo, Sarantopoulos, Yannis, and Tonge, Andrew. "Complexifications of real Banach spaces, polynomials and multilinear maps." Studia Mathematica 134.1 (1999): 1-33. <http://eudml.org/doc/216620>.

@article{Muñoz1999,
abstract = {We give a unified treatment of procedures for complexifying real Banach spaces. These include several approaches used in the past. We obtain best possible results for comparison of the norms of real polynomials and multilinear mappings with the norms of their complex extensions. These estimates provide generalizations and show sharpness of previously obtained inequalities.},
author = {Muñoz, Gustavo, Sarantopoulos, Yannis, Tonge, Andrew},
journal = {Studia Mathematica},
keywords = {complexification of Banach space; polynomial in Banach space; Chebyshev polynomial},
language = {eng},
number = {1},
pages = {1-33},
title = {Complexifications of real Banach spaces, polynomials and multilinear maps},
url = {http://eudml.org/doc/216620},
volume = {134},
year = {1999},
}

TY - JOUR
AU - Muñoz, Gustavo
AU - Sarantopoulos, Yannis
AU - Tonge, Andrew
TI - Complexifications of real Banach spaces, polynomials and multilinear maps
JO - Studia Mathematica
PY - 1999
VL - 134
IS - 1
SP - 1
EP - 33
AB - We give a unified treatment of procedures for complexifying real Banach spaces. These include several approaches used in the past. We obtain best possible results for comparison of the norms of real polynomials and multilinear mappings with the norms of their complex extensions. These estimates provide generalizations and show sharpness of previously obtained inequalities.
LA - eng
KW - complexification of Banach space; polynomial in Banach space; Chebyshev polynomial
UR - http://eudml.org/doc/216620
ER -

References

top
  1. [1] A. Alexiewicz and W. Orlicz, Analytic operations in real Banach spaces, Studia Math. 14 (1953), 57-78. Zbl0052.34601
  2. [2] R. Aron, B. Beauzamy and P. Enflo, Polynomials in many variables: Real vs complex norms, J. Approx. Theory 74 (1993), 181-198. Zbl0827.32001
  3. [3] R. Aron and J. Globevnik, Analytic functions on c 0 , Rev. Mat. Univ. Complut. Madrid 2 (1989), 27-33. Zbl0748.46021
  4. [4] R. Aron, M. Lacruz, R. Ryan and A. Tonge, The generalized Rademacher functions, Note Mat. 12 (1992), 15-25. Zbl0844.46002
  5. [5] C. Benítez and Y. Sarantopoulos, Characterization of real inner product spaces by means of symmetric bilinear forms, J. Math. Anal. Appl. 180 (1993), 207-220. Zbl0791.46015
  6. [6] C. Benítez, Y. Sarantopoulos and A. Tonge, Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc. 124 (1998), 395-408. 
  7. [7] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mémoires publiés par la Classe des Sciences de l'Académie de Belgique 4 (1912). Zbl45.0633.03
  8. [8] J. Bochnak, Analytic functions in Banach spaces, Studia Math. 35 (1970), 273-292. Zbl0199.18402
  9. [9] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, ibid. 39 (1971), 59-76. Zbl0214.37702
  10. [10] M. M. Day, Normed Linear Spaces, 3rd ed., Ergeb. Math. Grenzgeb. 21, Springer, 1973. Zbl0268.46013
  11. [11] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995. Zbl0855.47016
  12. [12] R. Duffin and A. C. Shaeffer, Some properties of functions of exponential type, Bull. Amer. Math. Soc. 44 (1938), 236-240. Zbl0018.40901
  13. [13] P. Erdős, Some remarks on polynomials, ibid. 53 (1947), 1169-1176. Zbl0032.38604
  14. [14] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953/56), 1-79. 
  15. [15] L. A. Harris, Bounds on the derivatives of holomorphic functions of vectors, in: Colloque d'Analyse (Rio de Janeiro, 1972), L. Nachbin (ed.), Actualités Sci. Indust. 1367, Hermann, Paris, 1975, 145-163. 
  16. [16] D. H. Hyers, Polynomial operators, in: Topics in Mathematical Analysis, Th. M. Rassias (ed.), World Sci., 1989, 410-444. Zbl0762.46037
  17. [17] M. Lacruz, Four aspects of modern analysis, Ph.D. thesis, Kent State Univ., 1991. 
  18. [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, 1977. Zbl0362.46013
  19. [19] G. G. Lorentz, Approximation of Functions, Chelsea, New York, N.Y., 1986. Zbl0643.41001
  20. [20] R. D. Mauldin (ed.), The Scottish Book. Mathematics from the Scottish Café, Birkhäuser, 1981. Zbl0485.01013
  21. [21] A. D. Michal and M. Wyman, Characterization of complex couple spaces, Ann. of Math. 42 (1941), 247-250. Zbl0024.41301
  22. [22] I. P. Natanson, Constructive Function Theory, vol. I, Ungar, New York, 1964. Zbl0133.31101
  23. [23] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., 1978; North-Holland, 1980. 
  24. [24] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986. 
  25. [25] H.-J. Rack, A generalization of an inequality of V. Markov to multivariate polynomials, J. Approx. Theory 35 (1982), 94-97. Zbl0487.41008
  26. [26] H.-J. Rack, A generalization of an inequality of V. Markov to multivariate polynomials, II, ibid. 40 (1984), 129-133. Zbl0531.41012
  27. [27] M. Reimer, On multivariate polynomials of least deviation from zero on the unit cube, ibid. 23 (1978), 65-69. 
  28. [28] Y. Sarantopoulos, Bounds on the derivatives of polynomials on normed spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), 307-312. 
  29. [29] R. Schatten, A Theory of Cross-Spaces, Princeton Univ. Press, 1950. 
  30. [30] J. Siciak, Wiener’s type sufficient conditions in N , Univ. Iagell. Acta Math. 35 (1997), 47-74. 
  31. [31] A. E. Taylor, Additions to the theory of polynomials in normed linear spaces, Tôhoku Math. J. 44 (1938), 302-318. Zbl0019.17002
  32. [32] A. E. Taylor, Analysis in complex Banach spaces, Bull. Amer. Math. Soc. 49 (1943), 652-659. Zbl0063.07311
  33. [33] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman Monographs Surveys Pure Appl. Math. 38, Longman Sci. Tech., 1989. 
  34. [34] C. Visser, A generalization of Chebyshev's inequality to polynomials in more than one variable, Indag. Math. 8 (1946), 310-311. 
  35. [35] J. Wenzel, Real and complex operator ideals, Quaestiones Math. 18 (1995), 271-285. Zbl0826.47033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.