# Symmetric subspaces of ${l}_{1}$ with large projection constants

Bruce Chalmers; Grzegorz Lewicki

Studia Mathematica (1999)

- Volume: 134, Issue: 2, page 119-133
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topChalmers, Bruce, and Lewicki, Grzegorz. "Symmetric subspaces of $l_1$ with large projection constants." Studia Mathematica 134.2 (1999): 119-133. <http://eudml.org/doc/216626>.

@article{Chalmers1999,

abstract = {We construct k-dimensional (k ≥ 3) subspaces $V^k$ of $l_1$, with a very simple structure and with projection constant satisfying $λ(V^k) ≥ λ(V^k,l_1) > λ(l_2^\{(k)\})$.},

author = {Chalmers, Bruce, Lewicki, Grzegorz},

journal = {Studia Mathematica},

keywords = {relative and absolute projection constants},

language = {eng},

number = {2},

pages = {119-133},

title = {Symmetric subspaces of $l_1$ with large projection constants},

url = {http://eudml.org/doc/216626},

volume = {134},

year = {1999},

}

TY - JOUR

AU - Chalmers, Bruce

AU - Lewicki, Grzegorz

TI - Symmetric subspaces of $l_1$ with large projection constants

JO - Studia Mathematica

PY - 1999

VL - 134

IS - 2

SP - 119

EP - 133

AB - We construct k-dimensional (k ≥ 3) subspaces $V^k$ of $l_1$, with a very simple structure and with projection constant satisfying $λ(V^k) ≥ λ(V^k,l_1) > λ(l_2^{(k)})$.

LA - eng

KW - relative and absolute projection constants

UR - http://eudml.org/doc/216626

ER -

## References

top- [CHFG] B. L. Chalmers, C. Franchetti and M. Giaquinta, On the self-length of two-dimensional Banach spaces, Bull. Austral. Math. Soc. 53 (1996), 101-107. Zbl0854.46012
- [CHM1] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in ${L}^{1}$, Trans. Amer. Math. Soc. 329 (1992), 289-305. Zbl0753.41018
- [CHM2] B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), 31-46. Zbl0827.41016
- [CHPS] B. L. Chalmers, K. C. Pan and B. Shekhtman, When is the adjoint of a minimal projection also minimal, in: Approximation Theory (Memphis, Tenn., 1991), Lecture Notes in Pure and Appl. Math. 138, Dekker, 1992, 217-226. Zbl0761.41036
- [KS] M. I. Kadets and M. G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), 453-458 (in Russian); English transl.: Math. Notes 10 (1971), 694-696. Zbl0229.46018
- [HK] H. Koenig, Projections onto symmetric spaces, Quaestiones Math. 18 (1995), 199-220.
- [PS] E. D. Positsel'skiĭ, Projection constants of symmetric spaces, Mat. Zametki 15 (1974), 719-727 (in Russian); English transl.: Math. Notes 15 (1974), 430-435.
- [RU] D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241-255. Zbl0125.06402
- [NT] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Wiley, New York, 1989. Zbl0721.46004
- [WO] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, 1991. Zbl0724.46012

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.