Implicit functions from locally convex spaces to Banach spaces
Studia Mathematica (1999)
- Volume: 134, Issue: 3, page 235-250
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHiltunen, Seppo. "Implicit functions from locally convex spaces to Banach spaces." Studia Mathematica 134.3 (1999): 235-250. <http://eudml.org/doc/216636>.
@article{Hiltunen1999,
abstract = {We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller $C_Π^k$-map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.},
author = {Hiltunen, Seppo},
journal = {Studia Mathematica},
keywords = {implicit functions; locally convex spaces; Banach spaces},
language = {eng},
number = {3},
pages = {235-250},
title = {Implicit functions from locally convex spaces to Banach spaces},
url = {http://eudml.org/doc/216636},
volume = {134},
year = {1999},
}
TY - JOUR
AU - Hiltunen, Seppo
TI - Implicit functions from locally convex spaces to Banach spaces
JO - Studia Mathematica
PY - 1999
VL - 134
IS - 3
SP - 235
EP - 250
AB - We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller $C_Π^k$-map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.
LA - eng
KW - implicit functions; locally convex spaces; Banach spaces
UR - http://eudml.org/doc/216636
ER -
References
top- [1] A. Frölicher and W. Bucher, z Calculus in Vector Spaces without Norm, Lecture Notes in Math. 30, Springer, Berlin, 1966. Zbl0156.38303
- [2] A. Frölicher and A. Kriegl, z Linear Spaces and Differentiation Theory, Pure Appl. Math., Wiley, Chichester, 1988.
- [3] M. W. Hirsch, Differential Topology, Springer, New York, 1976.
- [4] H. H. Keller, z Differential Calculus in Locally Convex Spaces, Lecture Notes in Math. 417, Springer, Berlin, 1974.
- [5] A. Kriegl, Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen, Monatsh. Math. 95 (1983), 287-309.
- [6] A. Kriegl and P. W. Michor, z Aspects of the theory of infinite dimensional manifolds, Differential Geom. Appl. 1 (1991), 159-176. Zbl0782.58011
- [7] S. Lang, Differential Manifolds, Springer, New York, 1988.
- [8] U. Seip, Kompakt erzeugte Vektorräume und Analysis, Lecture Notes in Math. 273, Springer, Berlin, 1972. Zbl0242.46003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.