A convenient setting for differential geometry and global analysis II
Let be a bounded open subset of , . In we deduce the global differentiability result for the solutions of the Dirichlet problem with controlled growth and nonlinearity . The result was obtained by first extending the interior differentiability result near the boundary and then proving the global differentiability result making use of a covering procedure.
Let ℳ be a type II₁ von Neumann algebra, τ a trace in ℳ, and L²(ℳ,τ) the GNS Hilbert space of τ. If L²(ℳ,τ)₊ is the completion of the set of selfadjoint elements, then each element ξ ∈ L²(ℳ,τ)₊ gives rise to a selfadjoint unbounded operator on L²(ℳ,τ). In this note we show that the exponential exp: L²(ℳ,τ)₊ → L²(ℳ,τ), , is continuous but not differentiable. The same holds for the Cayley transform . We also show that the unitary group with the strong operator topology is not an embedded submanifold...
We prove that the Quasi Differential of Bayoumi of maps between locally bounded F-spaces may not be Fréchet-Differential and vice versa. So a new concept has been discovered with rich applications (see [1–6]). Our F-spaces here are not necessarily locally convex
In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into , where is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in . Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class with smooth boundary.
Let M be a separable Finsler manifold of infinite dimension. Then it is proved, amongst other results, that under suitable conditions of local extensibility the germ of a function, or of a section of a vector bundle, on the union of a closed submanifold and a closed locally compact set in M, extends to a function on the whole of M.
We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller -map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.
Differential forms on the Fréchet manifold of smooth functions on a compact -dimensional manifold can be obtained in a natural way from pairs of differential forms on and by the hat pairing. Special cases are the transgression map (hat pairing with a constant function) and the bar map (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].