Canonical functional extensions on von Neumann algebras

Carlo Cecchini

Studia Mathematica (1999)

  • Volume: 135, Issue: 1, page 13-24
  • ISSN: 0039-3223

Abstract

top
The topology and the structure of the set of the canonical extensions of positive, weakly continuous functionals from a von Neumann subalgebra M 0 to a von Neumann algebra M are described.

How to cite

top

Cecchini, Carlo. "Canonical functional extensions on von Neumann algebras." Studia Mathematica 135.1 (1999): 13-24. <http://eudml.org/doc/216639>.

@article{Cecchini1999,
abstract = {The topology and the structure of the set of the canonical extensions of positive, weakly continuous functionals from a von Neumann subalgebra $M_0$ to a von Neumann algebra M are described.},
author = {Cecchini, Carlo},
journal = {Studia Mathematica},
keywords = {extension of functionals from subalgebra; positive selfdual cone; Connes cocycle; canonical functional extension; pointwise convergence; Radon-Nikodým derivatives},
language = {eng},
number = {1},
pages = {13-24},
title = {Canonical functional extensions on von Neumann algebras},
url = {http://eudml.org/doc/216639},
volume = {135},
year = {1999},
}

TY - JOUR
AU - Cecchini, Carlo
TI - Canonical functional extensions on von Neumann algebras
JO - Studia Mathematica
PY - 1999
VL - 135
IS - 1
SP - 13
EP - 24
AB - The topology and the structure of the set of the canonical extensions of positive, weakly continuous functionals from a von Neumann subalgebra $M_0$ to a von Neumann algebra M are described.
LA - eng
KW - extension of functionals from subalgebra; positive selfdual cone; Connes cocycle; canonical functional extension; pointwise convergence; Radon-Nikodým derivatives
UR - http://eudml.org/doc/216639
ER -

References

top
  1. [1] L. Accardi and C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), 245-273. Zbl0483.46043
  2. [2] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a noncommutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309-354. Zbl0287.46074
  3. [3] C. Cecchini, An abstract characterization of ω-conditional expectations, Math. Scand. 66 (1990), 155-160. Zbl0748.46033
  4. [4] C. Cecchini and D. Petz, State extensions and a Radon-Nikodym theorem for conditional expectations on von Neumann algebras, Pacific J. Math. 138 (1989), 9-23. 
  5. [5] C. Cecchini and D. Petz, Classes of conditional expectations over von Neumann algebras, J. Funct. Anal. 92 (1990), 8-29. 
  6. [6] F. Combes et C. Delaroche, Groupe modulaire d'une espérance conditionnelle dans une algèbre de von Neumann, Bull. Soc. Math. France 103 (1975), 385-426 (1976). Zbl0321.46050
  7. [7] A. Connes, Sur le théorème de Radon-Nikodym pour les poids normaux fidèles semifinis, ibid. 97 (1973), 253-258. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.