Some geometric properties of typical compact convex sets in Hilbert spaces

F. de Blasi

Studia Mathematica (1999)

  • Volume: 135, Issue: 2, page 143-162
  • ISSN: 0039-3223

Abstract

top
An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection q X ( e ) from e to X has fixed cardinality n+1 ( n arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection p X ( e ) from e to X where X is a compact subset of .

How to cite

top

de Blasi, F.. "Some geometric properties of typical compact convex sets in Hilbert spaces." Studia Mathematica 135.2 (1999): 143-162. <http://eudml.org/doc/216647>.

@article{deBlasi1999,
abstract = {An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection $q_X(e)$ from e to X has fixed cardinality n+1 ($n ⊆ ℕ$ arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection $p_X(e)$ from e to X where X is a compact subset of .},
author = {de Blasi, F.},
journal = {Studia Mathematica},
keywords = {Hilbert space; typical compact convex sets; typical compact sets; metric antiprojection; metric projection},
language = {eng},
number = {2},
pages = {143-162},
title = {Some geometric properties of typical compact convex sets in Hilbert spaces},
url = {http://eudml.org/doc/216647},
volume = {135},
year = {1999},
}

TY - JOUR
AU - de Blasi, F.
TI - Some geometric properties of typical compact convex sets in Hilbert spaces
JO - Studia Mathematica
PY - 1999
VL - 135
IS - 2
SP - 143
EP - 162
AB - An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection $q_X(e)$ from e to X has fixed cardinality n+1 ($n ⊆ ℕ$ arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection $p_X(e)$ from e to X where X is a compact subset of .
LA - eng
KW - Hilbert space; typical compact convex sets; typical compact sets; metric antiprojection; metric projection
UR - http://eudml.org/doc/216647
ER -

References

top
  1. [1] E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213-216. Zbl0143.34904
  2. [2] K. Bartke und H. Berens, Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47 (1986), 54-74. Zbl0619.41020
  3. [3] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229. Zbl0067.35002
  4. [4] J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), 702-720. Zbl0668.46006
  5. [5] L. E. J. Brouwer, Beweis der Invarianz der Dimensionenzahl, Math. Ann. 70 (1911), 161-165. Zbl42.0416.02
  6. [6] F. S. De Blasi, On typical compact convex sets in Hilbert spaces, Serdica 23 (1997), 255-268. Zbl0976.46010
  7. [7] F. S. De Blasi and T. Zamfirescu, Cardinality of the metric projection on compact sets in Hilbert space, Math. Proc. Cambridge Philos. Soc. 126 (1999), 37-44. Zbl0923.46022
  8. [8] R. De Ville and V. E. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), 433-439. Zbl0656.46012
  9. [9] A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Lecture Notes in Math. 1543, Springer, Berlin, 1993. Zbl0797.49001
  10. [10] M. Edelstein, Furthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176. Zbl0151.17601
  11. [11] P. M. Gruber, Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann. 229 (1977), 259-266. Zbl0342.52009
  12. [12] P. M. Gruber, A typical convex surface contains no closed geodesics, J. Reine Angew. Math. 416 (1991), 195-205. Zbl0718.52003
  13. [13] P. M. Gruber, Baire categories in geometry, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, Amsterdam, 1993, 1327-1346. Zbl0791.52002
  14. [14] V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51-63. Zbl0092.11602
  15. [15] K. S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), 168-174. Zbl0325.46022
  16. [16] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital. II 3 (1941), 5-7. 
  17. [17] J. C. Oxtoby, Measure and Category, Grad. Texts in Math. 2, Springer, New York, 1971. 
  18. [18] E. T. Poulsen, Convex sets with dense extreme points, Amer. Math. Monthly 66 (1959), 577-578. Zbl0104.08401
  19. [19] R. Schneider, On the curvature of convex bodies, Math. Ann. 240 (1979), 177-181. Zbl0379.52004
  20. [20] R. Schneider and J. A. Wieacker, Approximation of convex bodies by polytopes, Bull. London Math. Soc. 13 (1981), 149-156. Zbl0421.52005
  21. [21] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss. 171, Springer, New York, 1970. Zbl0197.38601
  22. [22] S. B. Stečkin [S. B. Stechkin], Approximation properties of sets in normed linear spaces, Rev. Math. Pures Appl. 8 (1963), 5-18 (in Russian). 
  23. [23] J. A. Wieacker, The convex hull of a typical compact set, Math. Ann. 282 (1988), 637-644. Zbl0636.52004
  24. [24] T. Zamfirescu, Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987), 57-62. Zbl0607.52002
  25. [25] T. Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch. Math. (Basel) 54 (1990), 563-566. Zbl0715.54013
  26. [26] T. Zamfirescu, Baire categories in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 139-164. Zbl0780.52003
  27. [27] N. V. Zhivkov, Compacta with dense ambiguous loci of metric projection and antiprojection, Proc. Amer. Math. Soc. 123 (1995), 3403-3411. Zbl0842.41024
  28. [28] N. V. Zhivkov, Densely two-valued metric projections in uniformly convex Banach spaces, Set-Valued Anal. 3 (1995), 195-209. Zbl0830.41028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.