# What is "local theory of Banach spaces"?

Studia Mathematica (1999)

- Volume: 135, Issue: 3, page 273-298
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topPietsch, Albrecht. "What is "local theory of Banach spaces"?." Studia Mathematica 135.3 (1999): 273-298. <http://eudml.org/doc/216655>.

@article{Pietsch1999,

abstract = {Banach space theory splits into several subtheories. On the one hand, there are an isometric and an isomorphic part; on the other hand, we speak of global and local aspects. While the concepts of isometry and isomorphy are clear, everybody seems to have its own interpretation of what "local theory" means. In this essay we analyze this situation and propose rigorous definitions, which are based on new concepts of local representability of operators.},

author = {Pietsch, Albrecht},

journal = {Studia Mathematica},

keywords = {local theory of Banach spaces; local representability of operators},

language = {eng},

number = {3},

pages = {273-298},

title = {What is "local theory of Banach spaces"?},

url = {http://eudml.org/doc/216655},

volume = {135},

year = {1999},

}

TY - JOUR

AU - Pietsch, Albrecht

TI - What is "local theory of Banach spaces"?

JO - Studia Mathematica

PY - 1999

VL - 135

IS - 3

SP - 273

EP - 298

AB - Banach space theory splits into several subtheories. On the one hand, there are an isometric and an isomorphic part; on the other hand, we speak of global and local aspects. While the concepts of isometry and isomorphy are clear, everybody seems to have its own interpretation of what "local theory" means. In this essay we analyze this situation and propose rigorous definitions, which are based on new concepts of local representability of operators.

LA - eng

KW - local theory of Banach spaces; local representability of operators

UR - http://eudml.org/doc/216655

ER -

## References

top- [bea 1] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), 103-139. Zbl0372.46016
- [bea 2] B. Beauzamy, Quelques propriétés des opérateurs uniformément convexifiants, ibid. 60 (1977), 211-222. Zbl0348.46017
- [b-s] A. Brunel and L. Sucheston, On J-convexity and some ergodic super-properties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90.
- [d-k] D. Dacunha-Castelle et J. L. Krivine, Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Studia Math. 41 (1972), 315-344.
- [g-j] Y. Gordon and M. Junge, Volume ratios in ${L}_{p}$-spaces, Studia Math., to appear. Zbl0952.46008
- [gro] A. Grothendieck, Sur certaines classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers, Bol. Soc. Mat. São Paulo 8 (1956), 81-110.
- [hei 1] S. Heinrich, Finite representability and super-ideals of operators, Dissertationes Math. 172 (1980).
- [hei 2] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104. Zbl0412.46017
- [h-k] A. Hinrichs and T. Kaufhold, Distances of finite dimensional subspaces of ${L}_{p}$-spaces, to appear.
- [jam] C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904. Zbl0222.46009
- [kue] K.-D. Kürsten, On some problems of A. Pietsch, II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 29 (1978), 61-73 (in Russian).
- [l-m] J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 1150-1220. Zbl0791.52003
- [p-r] A. Pełczyński and H. P. Rosenthal, Localization techniques in ${L}^{p}$ spaces, Studia Math. 52 (1975), 263-289. Zbl0297.46023
- [pie] A. Pietsch, Ultraprodukte von Operatoren in Banachräumen, Math. Nachr. 61 (1974), 123-132. Zbl0288.47037
- [PIE] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam, 1980.
- [P-W] A. Pietsch and J. Wenzel, Orthonormal Systems and Banach Space Geometry, Cambridge Univ. Press, 1998. Zbl0919.46001
- [ste] J. Stern, Propriétés locales et ultrapuissances d'espaces de Banach, Sém. Maurey-Schwartz 1974/75, Exposés 7 et 8, École Polytechnique, Paris.
- [TOM] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, Harlow, 1989. Zbl0721.46004

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.