Kadec norms and Borel sets in a Banach space
Studia Mathematica (1999)
- Volume: 136, Issue: 1, page 1-16
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. A. Alexandrov, One generalization of the Kadec property, preprint, 1993.
- [2] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monografie Mat. 58, PWN-Polish Sci. Publ., Warszawa, 1975. Zbl0304.57001
- [3] B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994), 41-68. Zbl0808.46021
- [4] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys 64, Longman Sci. Tech., 1993. Zbl0782.46019
- [5] G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), 663-677. Zbl0361.46017
- [6] G. A. Edgar, Measurability in a Banach space II, ibid. 28 (1979), 559-579. Zbl0418.46034
- [7] G. A. Edgar, A long James space, in: Measure Theory (Oberwolfach 1979), Lecture Notes in Math. 794, Springer, 1980, 31-37.
- [8] M. Fabian, On a dual locally uniformly rotund norm on a dual Vašák space, Studia Math. 101 (1991), 69-81. Zbl0815.46018
- [9] M. Fabian and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity, ibid. 91 (1988), 141-151. Zbl0692.46012
- [10] R. W. Hansell, Descriptive sets and the topology of nonseparable Banach spaces, preprint.
- [11] R. Haydon, Trees in renorming theory, preprint. Zbl1036.46003
- [12] R. Haydon, Baire trees, bad norms and the Namioka property, preprint. Zbl0870.46008
- [13] R. Haydon, J. E. Jayne, I. Namioka and C. A. Rogers, Continuous functions on totally ordered spaces that are compact in their order topologies, preprint. Zbl1003.46002
- [14] J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets, Collect. Mat. 41 (1990), 133-163. Zbl0764.46015
- [15] J. E. Jayne, I. Namioka and C. A. Rogers, σ-fragmentable Banach spaces, Mathematika 39 (1992), 161-188 and 197-215.
- [16] J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. (3) 66 (1993), 651-672. Zbl0793.54026
- [17] J. E. Jayne, I. Namioka and C. A. Rogers, Continuous functions on products of compact Hausdorff spaces, to appear. Zbl1031.46031
- [18] G. Lancien, Théorie de l'indice et problèmes de renormage en géométrie des espaces de Banach, thèse, Paris, 1992.
- [19] A. Moltó, J. Orihuela and S. Troyanski, Locally uniform rotund renorming and fragmentability, Proc. London Math. Soc. (3) 75 (1997), 619-640. Zbl0909.46011
- [20] A. Moltó, J. Orihuela, S. Troyanski and M. Valdivia, On weakly locally uniformly rotund Banach spaces, to appear. Zbl0927.46010
- [21] I. Namioka, Radon-Nikodym compact spaces and fragmentability, Mathematika 34 (1989), 258-281. Zbl0654.46017
- [22] L. Oncina, Borel sets and σ-fragmentability of a Banach space, Master Degree Thesis at University College London, 1996.
- [23] M. Raja, On topology and renorming of a Banach space, C. R. Acad. Bulgare Sci., to appear. Zbl0946.46015
- [24] M. Talagrand, Sur une conjecture de H. H. Corson, Bull. Sci. Math. 99 (1975), 211-212.
- [25] M. Talagrand, Sur la structure borélienne des espaces analytiques, ibid. 101 (1977), 415-422. Zbl0368.28003
- [26] M. Talagrand, Comparaison des boréliens d'un espace de Banach pour les topologies fortes et faibles, Indiana Univ. Math. J. 27 (1978), 1001-1004. Zbl0396.28007
- [27] M. Valdivia, Projective resolutions of identity in C(K) spaces, Arch. Math. (Basel) 54 (1990), 493-498. Zbl0707.46009
- [28] L. Vašák, On one generalization of weakly compactly generated spaces, Studia Math. 70 (1981), 11-19. Zbl0376.46012