The dual of every Asplund space admits a projectional resolution of the identity
Marián Fabian; Gilles Godefroy
Studia Mathematica (1988)
- Volume: 91, Issue: 2, page 141-151
- ISSN: 0039-3223
Access Full Article
topHow to cite
topFabian, Marián, and Godefroy, Gilles. "The dual of every Asplund space admits a projectional resolution of the identity." Studia Mathematica 91.2 (1988): 141-151. <http://eudml.org/doc/218881>.
@article{Fabian1988,
author = {Fabian, Marián, Godefroy, Gilles},
journal = {Studia Mathematica},
keywords = {Asplund space; dual Banach space with the Radon-Nikodym property admits a projectional resolution of the identity},
language = {eng},
number = {2},
pages = {141-151},
title = {The dual of every Asplund space admits a projectional resolution of the identity},
url = {http://eudml.org/doc/218881},
volume = {91},
year = {1988},
}
TY - JOUR
AU - Fabian, Marián
AU - Godefroy, Gilles
TI - The dual of every Asplund space admits a projectional resolution of the identity
JO - Studia Mathematica
PY - 1988
VL - 91
IS - 2
SP - 141
EP - 151
LA - eng
KW - Asplund space; dual Banach space with the Radon-Nikodym property admits a projectional resolution of the identity
UR - http://eudml.org/doc/218881
ER -
Citations in EuDML Documents
top- Aníbal Moltó, Vicente Montesinos, José Orihuela, Stanimir L. Troyanski, Weakly uniformly rotund Banach spaces
- M. Raja, Kadec norms and Borel sets in a Banach space
- Eva Adam, Peter Biström, Andreas Kriegl, Countably evaluating homomorphisms on real function algebras
- Ondřej F. K. Kalenda, On projectional skeletons in Vašák spaces
- G. Godefroy, N. Kalton, P. Saphar, Unconditional ideals in Banach spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.