Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables

Haïkel Skihri

Studia Mathematica (1999)

  • Volume: 136, Issue: 3, page 229-253
  • ISSN: 0039-3223

Abstract

top
The aim of this paper is to study the α-semi-Fredholm operators in a nonseparable Hilbert space H for all cardinals α with 0 α d i m H . In the first part, we find the relation between γ α ( T ) and c ( π α ( T ) ) for all 0 -regular cardinals α, where γ α is the reduced minimum modulus of weight α, c is the reduced minimum modulus (in a C*-algebra) and π α is the canonical surjection from B(H) onto C α ( H ) = B ( H ) / K α ( H ) . We study the continuity points of the maps c α : T c ( π α ( T ) ) and γ α : T γ α ( T ) . In the second part, we prove some approximation results for semi-Fredholm operators. We show that all connected components of semi-Fredholm operators of at most countable index have the same topological boundary. We show that this is not true for indices strictly greater than 0 .

How to cite

top

Skihri, Haïkel. "Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables." Studia Mathematica 136.3 (1999): 229-253. <http://eudml.org/doc/216669>.

@article{Skihri1999,
author = {Skihri, Haïkel},
journal = {Studia Mathematica},
language = {fre},
number = {3},
pages = {229-253},
title = {Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables},
url = {http://eudml.org/doc/216669},
volume = {136},
year = {1999},
}

TY - JOUR
AU - Skihri, Haïkel
TI - Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables
JO - Studia Mathematica
PY - 1999
VL - 136
IS - 3
SP - 229
EP - 253
LA - fre
UR - http://eudml.org/doc/216669
ER -

References

top
  1. [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294. 
  2. [2] R. H. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. Zbl0483.47015
  3. [3] R. H. Bouldin, Closure of invertible operators on a Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726. Zbl0691.47001
  4. [4] R. H. Bouldin, Distance to invertible operators without separability, ibid. 116 (1992), 489-497. Zbl0784.47001
  5. [5] R. H. Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178. Zbl0806.47011
  6. [6] R. H. Bouldin, Generalization of semi-Fredholm operators, Proc. Amer. Math. Soc. 123 (1995), 3757-3763. Zbl0844.47007
  7. [7] N. Bourbaki, Eléments de Mathématique. Livre I. Théorie des ensembles. Chapitre 3, Ensembles ordonnés cardinaux, nombres entiers, Hermann, Paris, 1967. 
  8. [8] L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. 10 (1990), 209-238. Zbl0725.47020
  9. [9] L. A. Coburn and A. Lebow, Components of invertible elements in quotient algebras of operators, Trans. Amer. Math. Soc. 130 (1968), 359-365. Zbl0155.18602
  10. [10] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990. Zbl0706.46003
  11. [11] G. Edgar, D. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80. Zbl0219.47001
  12. [12] D. Ernest, Operators with α -closed range, Tôhoku Math. J. 24 (1972), 45-49. 
  13. [13] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192. Zbl0246.47006
  14. [13] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. Zbl0148.12501
  15. [14] B. Gramsch, Eine idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115. 
  16. [15] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967. 
  17. [16] R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. Zbl0810.46062
  18. [17] R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138. Zbl0810.46063
  19. [18] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982. Zbl0494.47001
  20. [19] S. Izumino and Y. Kato, The closure of invertible operators on a Hilbert space, Acta Sci. Math. (Szeged) 49 (1985), 321-327. Zbl0608.47001
  21. [20] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. 
  22. [21] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. Zbl0090.09003
  23. [22] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605. Zbl0197.11301
  24. [23] M. Mbekhta, Conorme et inverse généralisé dans les C*-algèbres, Canad. Math. Bull. 35 (1992), 515-522. 
  25. [24] H. Skhiri, On the topological boundary of semi-Fredholm operators, Proc. Amer. Math. Soc. 126 (1998), 1381-1389. Zbl0892.47014
  26. [25] H. Skhiri, Opérateurs semi-Fredholm : structures et approximations, Thèse de doctorat, Université de Lille 1, 1997. Zbl0911.47018
  27. [26] A. Ströh, Regular liftings in C*-algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 1-7. Zbl0830.46045
  28. [27] P. Y. Wu, Approximation by invertible and noninvertible operators, J. Approx. Theory 56 (1989), 267-276. Zbl0673.41017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.