Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables
Studia Mathematica (1999)
- Volume: 136, Issue: 3, page 229-253
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSkihri, Haïkel. "Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables." Studia Mathematica 136.3 (1999): 229-253. <http://eudml.org/doc/216669>.
@article{Skihri1999,
author = {Skihri, Haïkel},
journal = {Studia Mathematica},
language = {fre},
number = {3},
pages = {229-253},
title = {Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables},
url = {http://eudml.org/doc/216669},
volume = {136},
year = {1999},
}
TY - JOUR
AU - Skihri, Haïkel
TI - Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables
JO - Studia Mathematica
PY - 1999
VL - 136
IS - 3
SP - 229
EP - 253
LA - fre
UR - http://eudml.org/doc/216669
ER -
References
top- [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
- [2] R. H. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. Zbl0483.47015
- [3] R. H. Bouldin, Closure of invertible operators on a Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726. Zbl0691.47001
- [4] R. H. Bouldin, Distance to invertible operators without separability, ibid. 116 (1992), 489-497. Zbl0784.47001
- [5] R. H. Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178. Zbl0806.47011
- [6] R. H. Bouldin, Generalization of semi-Fredholm operators, Proc. Amer. Math. Soc. 123 (1995), 3757-3763. Zbl0844.47007
- [7] N. Bourbaki, Eléments de Mathématique. Livre I. Théorie des ensembles. Chapitre 3, Ensembles ordonnés cardinaux, nombres entiers, Hermann, Paris, 1967.
- [8] L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. 10 (1990), 209-238. Zbl0725.47020
- [9] L. A. Coburn and A. Lebow, Components of invertible elements in quotient algebras of operators, Trans. Amer. Math. Soc. 130 (1968), 359-365. Zbl0155.18602
- [10] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990. Zbl0706.46003
- [11] G. Edgar, D. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80. Zbl0219.47001
- [12] D. Ernest, Operators with α -closed range, Tôhoku Math. J. 24 (1972), 45-49.
- [13] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192. Zbl0246.47006
- [13] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. Zbl0148.12501
- [14] B. Gramsch, Eine idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.
- [15] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
- [16] R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. Zbl0810.46062
- [17] R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138. Zbl0810.46063
- [18] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982. Zbl0494.47001
- [19] S. Izumino and Y. Kato, The closure of invertible operators on a Hilbert space, Acta Sci. Math. (Szeged) 49 (1985), 321-327. Zbl0608.47001
- [20] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
- [21] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. Zbl0090.09003
- [22] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605. Zbl0197.11301
- [23] M. Mbekhta, Conorme et inverse généralisé dans les C*-algèbres, Canad. Math. Bull. 35 (1992), 515-522.
- [24] H. Skhiri, On the topological boundary of semi-Fredholm operators, Proc. Amer. Math. Soc. 126 (1998), 1381-1389. Zbl0892.47014
- [25] H. Skhiri, Opérateurs semi-Fredholm : structures et approximations, Thèse de doctorat, Université de Lille 1, 1997. Zbl0911.47018
- [26] A. Ströh, Regular liftings in C*-algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 1-7. Zbl0830.46045
- [27] P. Y. Wu, Approximation by invertible and noninvertible operators, J. Approx. Theory 56 (1989), 267-276. Zbl0673.41017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.