Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules

Olaf Ermert

Studia Mathematica (1999)

  • Volume: 137, Issue: 1, page 1-31
  • ISSN: 0039-3223

Abstract

top
We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in n with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.

How to cite

top

Ermert, Olaf. "Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules." Studia Mathematica 137.1 (1999): 1-31. <http://eudml.org/doc/216672>.

@article{Ermert1999,
abstract = {We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in $ℂ^n$ with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.},
author = {Ermert, Olaf},
journal = {Studia Mathematica},
keywords = {Banach -bimodule; Hochschild cohomology; smoothly bounded; product domain},
language = {eng},
number = {1},
pages = {1-31},
title = {Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules},
url = {http://eudml.org/doc/216672},
volume = {137},
year = {1999},
}

TY - JOUR
AU - Ermert, Olaf
TI - Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 1
SP - 1
EP - 31
AB - We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in $ℂ^n$ with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.
LA - eng
KW - Banach -bimodule; Hochschild cohomology; smoothly bounded; product domain
UR - http://eudml.org/doc/216672
ER -

References

top
  1. [1] W. G. Bade, H. G. Dales and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 656 (1999). Zbl0931.46034
  2. [2] A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York, 1969. Zbl0199.46103
  3. [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, 1956. 
  4. [4] M. Crownover, One-dimensional point derivation spaces in Banach algebras, Studia Math. 35 (1970), 249-259. Zbl0201.17301
  5. [5] J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr. (N.S.) 10, Oxford Univ. Press, New York, 1996. Zbl0855.47013
  6. [6] J. F. Feinstein, Point derivations and prime ideals in R(X), Studia Math. 98 (1991), 235-246. 
  7. [7] A. Ya. Helemskiĭ, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989 (Russian original: Moscow Univ. Press, 1986). 
  8. [8] A. Ya. Helemskiĭ, Homological dimension of Banach algebras of analytic functions, Mat. Sb. 83 (1970), 222-233 (= Math. USSR-Sb. 12 (1970), 221-233). 
  9. [9] A. Ya. Helemskiĭ, Homological methods in the holomorphic calculus of several operators in Banach space after Taylor, Uspekhi Mat. Nauk 36 (1981), 127-172 (= Russian Math. Surveys 36 (1981), no. 1). 
  10. [10] A. Ya. Helemskiĭ, Flat Banach modules and amenable algebras, Trudy Moskov. Mat. Obshch. 47 (1984), 179-218 (in Russian). 
  11. [11] G. M. Henkin, Approximation of functions in pseudoconvex domains and the theorem of Z. L. Leibenzon, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 37-42 (in Russian). Zbl0214.33701
  12. [12] G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Monographs Math. 79, Birkhäuser, Basel, 1984. 
  13. [13] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990. Zbl0685.32001
  14. [14] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). Zbl0256.18014
  15. [15] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, de Gruyter, Berlin, 1983. Zbl0528.32001
  16. [16] L. I. Pugach, Projective and flat ideals of function algebras and their connection with analytic structure, Mat. Zametki 31 (1982), 223-229 (in Russian). 
  17. [17] L. I. Pugach and M. C. White, Homology and cohomology of commutative Banach algebras and analytic polydiscs, Glasgow Math. J., 1999, to appear. Zbl0948.46038
  18. [18] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, New York, 1986. Zbl0591.32002
  19. [19] T. T. Read, The powers of a maximal ideal in a Banach algebra and analytic structure, Trans. Amer. Math. Soc. 161 (1971), 235-248. Zbl0234.46058
  20. [20] J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137-182. Zbl0271.46040
  21. [21] J. L. Taylor, A general framework for a multi-operator functional calculus, ibid., 183-252. Zbl0271.46041
  22. [22] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967. 
  23. [23] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge Univ. Press, 1994. 
  24. [24] M. Wodzicki, Resolution of the cohomology comparison problem for amenable Banach algebras, Invent. Math. 106 (1991), 541-547. Zbl0765.46028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.