# Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules

Studia Mathematica (1999)

- Volume: 137, Issue: 1, page 1-31
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topErmert, Olaf. "Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules." Studia Mathematica 137.1 (1999): 1-31. <http://eudml.org/doc/216672>.

@article{Ermert1999,

abstract = {We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in $ℂ^n$ with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.},

author = {Ermert, Olaf},

journal = {Studia Mathematica},

keywords = {Banach -bimodule; Hochschild cohomology; smoothly bounded; product domain},

language = {eng},

number = {1},

pages = {1-31},

title = {Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules},

url = {http://eudml.org/doc/216672},

volume = {137},

year = {1999},

}

TY - JOUR

AU - Ermert, Olaf

TI - Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules

JO - Studia Mathematica

PY - 1999

VL - 137

IS - 1

SP - 1

EP - 31

AB - We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in $ℂ^n$ with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.

LA - eng

KW - Banach -bimodule; Hochschild cohomology; smoothly bounded; product domain

UR - http://eudml.org/doc/216672

ER -

## References

top- [1] W. G. Bade, H. G. Dales and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 656 (1999). Zbl0931.46034
- [2] A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York, 1969. Zbl0199.46103
- [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, 1956.
- [4] M. Crownover, One-dimensional point derivation spaces in Banach algebras, Studia Math. 35 (1970), 249-259. Zbl0201.17301
- [5] J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr. (N.S.) 10, Oxford Univ. Press, New York, 1996. Zbl0855.47013
- [6] J. F. Feinstein, Point derivations and prime ideals in R(X), Studia Math. 98 (1991), 235-246.
- [7] A. Ya. Helemskiĭ, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989 (Russian original: Moscow Univ. Press, 1986).
- [8] A. Ya. Helemskiĭ, Homological dimension of Banach algebras of analytic functions, Mat. Sb. 83 (1970), 222-233 (= Math. USSR-Sb. 12 (1970), 221-233).
- [9] A. Ya. Helemskiĭ, Homological methods in the holomorphic calculus of several operators in Banach space after Taylor, Uspekhi Mat. Nauk 36 (1981), 127-172 (= Russian Math. Surveys 36 (1981), no. 1).
- [10] A. Ya. Helemskiĭ, Flat Banach modules and amenable algebras, Trudy Moskov. Mat. Obshch. 47 (1984), 179-218 (in Russian).
- [11] G. M. Henkin, Approximation of functions in pseudoconvex domains and the theorem of Z. L. Leibenzon, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 37-42 (in Russian). Zbl0214.33701
- [12] G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Monographs Math. 79, Birkhäuser, Basel, 1984.
- [13] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990. Zbl0685.32001
- [14] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). Zbl0256.18014
- [15] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, de Gruyter, Berlin, 1983. Zbl0528.32001
- [16] L. I. Pugach, Projective and flat ideals of function algebras and their connection with analytic structure, Mat. Zametki 31 (1982), 223-229 (in Russian).
- [17] L. I. Pugach and M. C. White, Homology and cohomology of commutative Banach algebras and analytic polydiscs, Glasgow Math. J., 1999, to appear. Zbl0948.46038
- [18] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, New York, 1986. Zbl0591.32002
- [19] T. T. Read, The powers of a maximal ideal in a Banach algebra and analytic structure, Trans. Amer. Math. Soc. 161 (1971), 235-248. Zbl0234.46058
- [20] J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137-182. Zbl0271.46040
- [21] J. L. Taylor, A general framework for a multi-operator functional calculus, ibid., 183-252. Zbl0271.46041
- [22] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
- [23] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge Univ. Press, 1994.
- [24] M. Wodzicki, Resolution of the cohomology comparison problem for amenable Banach algebras, Invent. Math. 106 (1991), 541-547. Zbl0765.46028

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.