Compound invariants and embeddings of Cartesian products
P. Chalov; P. Djakov; V. Zahariuta
Studia Mathematica (1999)
- Volume: 137, Issue: 1, page 33-47
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topChalov, P., Djakov, P., and Zahariuta, V.. "Compound invariants and embeddings of Cartesian products." Studia Mathematica 137.1 (1999): 33-47. <http://eudml.org/doc/216673>.
@article{Chalov1999,
abstract = {New compound geometric invariants are constructed in order to characterize complemented embeddings of Cartesian products of power series spaces. Bessaga's conjecture is proved for the same class of spaces.},
author = {Chalov, P., Djakov, P., Zahariuta, V.},
journal = {Studia Mathematica},
keywords = {isomorphic classification; Köthe spaces; finite and infinite power series spaces; Bessaga's conjecture; compound invariants; embeddings of Cartesian products; Fréchet space; geometric invariants; power series spaces; complemented subspace},
language = {eng},
number = {1},
pages = {33-47},
title = {Compound invariants and embeddings of Cartesian products},
url = {http://eudml.org/doc/216673},
volume = {137},
year = {1999},
}
TY - JOUR
AU - Chalov, P.
AU - Djakov, P.
AU - Zahariuta, V.
TI - Compound invariants and embeddings of Cartesian products
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 1
SP - 33
EP - 47
AB - New compound geometric invariants are constructed in order to characterize complemented embeddings of Cartesian products of power series spaces. Bessaga's conjecture is proved for the same class of spaces.
LA - eng
KW - isomorphic classification; Köthe spaces; finite and infinite power series spaces; Bessaga's conjecture; compound invariants; embeddings of Cartesian products; Fréchet space; geometric invariants; power series spaces; complemented subspace
UR - http://eudml.org/doc/216673
ER -
References
top- [1] B C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318. Zbl0182.45301
- [2] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. 9 (1961), 677-683. Zbl0109.33502
- [3] P. B. Djakov, A short proof of the theorem on quasi-equivalence of regular bases, Studia Math. 55 (1975), 269-271. Zbl0317.46007
- [4] P. B. Djakov, M. Yurdakul and V. P. Zahariuta, On Cartesian products of Köthe spaces, Bull. Polish Acad. Sci. 43 (1996), 113-117. Zbl0835.46004
- [5] P. B. Djakov, M. Yurdakul and V. P. Zahariuta, Isomorphic classification of Cartesian products of power series spaces, Michigan Math. J. 43 (1996), 221-229. Zbl0890.46008
- [6] M. M. Dragilev, On regular bases in nuclear spaces, Mat. Sb. 68 (1965), 153-173 (in Russian).
- [7] M. M. Dragilev, Bases in Köthe Spaces, Rostov-na-Donu, 1983 (in Russian).
- [8] A. N. Kolmogorov, On the linear dimension of topological vector spaces, Dokl. Akad. Nauk SSSR 120 (1958), 239-241 (in Russian). Zbl0080.31203
- [9] V. P. Kondakov, Problems of Geometry of Nonnormable Spaces, Rostov State University, Rostov-na-Donu, 1983 (in Russian). Zbl0614.46004
- [10] V. P. Kondakov, On structure of unconditional bases in some Köthe spaces, Studia Math. 76 (1983), 137-151 (in Russian). Zbl0539.46010
- [11] V. P. Kondakov and V. P. Zahariuta, On weak equivalence of bases in Köthe spaces, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Ser. Estestv. Nauk 4 (1982), 110-115 (in Russian).
- [12] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (1961), no. 4, 63-132 (in Russian). Zbl0104.08601
- [13] B. S. Mityagin, Sur l'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sci. Paris 269 (1969), 426-428. Zbl0186.44704
- [14] B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111-137 (in Russian).
- [15] B. S. Mityagin, Non-Schwarzian power series spaces, Math. Z. 182 (1983), 303-310. Zbl0541.46007
- [16] A. Pełczyński, On the approximation of S-spaces by finite-dimensional spaces, Bull. Acad. Polon. Sci. 5 (1957), 879-881. Zbl0078.28703
- [17] M. Yurdakul and V. P. Zahariuta, Linear topological invariants and isomorphic classification of Cartesian products of locally convex spaces, Turkish J. Math. 19 (1995), 37-47. Zbl0861.46005
- [18] V. P. Zahariuta, On isomorphisms of Cartesian products of linear topological spaces, Funktsional. Anal. i Prilozhen. 4 (1970), no. 2, 87-88 (in Russian).
- [19] V. P. Zahariuta, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201-221.
- [20] V. P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, in: Matem. Analiz i ego Prilozhen. Rostov Univ., Vol. 2 (1970), 3-13, Vol. 3 (1971), 176-180 (in Russian).
- [21] V. P. Zahariuta, Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (1977), no. 3, 24-30 (in Russian).
- [22] V. P. Zahariuta, Synthetic diameters and linear topological invariants, in: School on the Theory of Operators in Function Spaces (abstracts of reports), Minsk, 1978, 51-52 (in Russian).
- [23] V. P. Zahariuta, Linear Topological Invariants and Their Application to Generalized Power Spaces, Rostov Univ., 1979 (in Russian).
- [24] V. P. Zahariuta, Linear topological invariants and their application to isomorphic classification of generalized power spaces, Turkish J. Math. 2 (1996), 237-289. Zbl0866.46005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.