Geometry of nuclear spaces. II - Linear topological invariants
B. Mityagin (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
B. Mityagin (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
P. Djakov, V. Zahariuta (1996)
Studia Mathematica
Similarity:
A complete isomorphic classification is obtained for Köthe spaces such that ; here χ is the characteristic function of the interval [0,∞), the function κ: ℕ → ℕ repeats its values infinitely many times, and . Any of these spaces has the quasi-equivalence property.
M. Ramanujan, T. Terzioğlu (1979)
Studia Mathematica
Similarity:
Mefharet Kocatepe, Viacheslav Zahariuta (1996)
Studia Mathematica
Similarity:
The isomorphic classification problem for the Köthe models of some function spaces is considered. By making use of some interpolative neighborhoods which are related to the linear topological invariant and other invariants related to the “quantity” characteristics of the space, a necessary condition for the isomorphism of two such spaces is proved. As applications, it is shown that some pairs of spaces which have the same interpolation property are not isomorphic.
V. Zahariuta (1973)
Studia Mathematica
Similarity:
Lawrence Crone, William Robinson (1975)
Studia Mathematica
Similarity:
Ed Dubinsky (1980)
Studia Mathematica
Similarity:
N. Aronszajn, L. Gross, S. Kwapień, N. Nielsen, A. Pełczyński, A. Pietsch, L. Schwartz, P. Saphar, S. Chevet, R. Dudley, D. Garling, N. Kalton, B. Mitjagin, S. Rolewicz, E. Schock, J. Daleckiĭ, J. Dobrakov, B. Gelbaum, G. Henkin, L. Nachbin, N. Peck, L. Waelbroeck, P. Porcelli, M. Rao, M. Zerner, V. Zakharjuta (1970)
Studia Mathematica
Similarity:
1. The operator ideals and measures in linear spaces 469-472 2. Schauder bases and linear topological invariants 473-478 3. Various problems 479-483
Ed Dubinsky, Dietmar Vogt (1989)
Studia Mathematica
Similarity:
M. Alpseymen (1981)
Studia Mathematica
Similarity: