Pointwise multiplication operators on weighted Banach spaces of analytic functions

J. Bonet; P. Domański; M. Lindström

Studia Mathematica (1999)

  • Volume: 137, Issue: 2, page 177-194
  • ISSN: 0039-3223

Abstract

top
For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator M φ , M φ ( f ) = φ f , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when M φ ' is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map M φ ' .

How to cite

top

Bonet, J., Domański, P., and Lindström, M.. "Pointwise multiplication operators on weighted Banach spaces of analytic functions." Studia Mathematica 137.2 (1999): 177-194. <http://eudml.org/doc/216683>.

@article{Bonet1999,
abstract = {For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator $M_φ$, $M_φ(f)=φf$, on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when $M^\{\prime \}_φ$ is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map $M^\{\prime \}_φ$.},
author = {Bonet, J., Domański, P., Lindström, M.},
journal = {Studia Mathematica},
keywords = {weighted Banach spaces of analytic functions; pointwise multiplication operator; essential norm, closed range; approximative point spectrum; maximal ideal space of $H^∞$; Shilov boundary; Gleason part; hypercyclic operator; chaotic operator; hyperbolic operator; closed range operator; weighted Banach space; multplication operator; maximal ideal space},
language = {eng},
number = {2},
pages = {177-194},
title = {Pointwise multiplication operators on weighted Banach spaces of analytic functions},
url = {http://eudml.org/doc/216683},
volume = {137},
year = {1999},
}

TY - JOUR
AU - Bonet, J.
AU - Domański, P.
AU - Lindström, M.
TI - Pointwise multiplication operators on weighted Banach spaces of analytic functions
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 2
SP - 177
EP - 194
AB - For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator $M_φ$, $M_φ(f)=φf$, on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when $M^{\prime }_φ$ is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map $M^{\prime }_φ$.
LA - eng
KW - weighted Banach spaces of analytic functions; pointwise multiplication operator; essential norm, closed range; approximative point spectrum; maximal ideal space of $H^∞$; Shilov boundary; Gleason part; hypercyclic operator; chaotic operator; hyperbolic operator; closed range operator; weighted Banach space; multplication operator; maximal ideal space
UR - http://eudml.org/doc/216683
ER -

References

top
  1. [A] S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26-44. Zbl0484.30033
  2. [BO] B. Berndtsson and J. Ortega-Cerdà, On interpolation and sampling in Hilbert spaces of analytic functions, ibid. 464 (1995), 109-128. Zbl0823.30023
  3. [BBT] K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 70-79. Zbl0934.46027
  4. [BS] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79. Zbl0801.46021
  5. [BDL] J. Bonet, P. Domański and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), 139-148. Zbl0939.47020
  6. [BDLT] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. 64 (1998), 101-118. Zbl0912.47014
  7. [B] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), 845-847. Zbl0809.47005
  8. [ChD] M. D. Choi and C. Davis, The spectral mapping theorem for joint approximative point spectrum, Bull. Amer. Math. Soc. 80 (1974), 317-321. Zbl0276.47001
  9. [C] J. B. Conway, A Course in Functional Analysis, Springer, Berlin, 1990. Zbl0706.46003
  10. [DL] P. Domański and M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, preprint, 1998. 
  11. [G] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981. Zbl0469.30024
  12. [GS] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifold, J. Funct. Anal. 98 (1991), 229-269. Zbl0732.47016
  13. [Go] P. Gorkin, Functions not vanishing on trivial Gleason parts of Douglas algebras, Proc. Amer. Math. Soc. 104 (1988), 1086-1090. Zbl0694.46035
  14. [H] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. Zbl0192.48302
  15. [KL] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531-534. Zbl0206.08702
  16. [L1] W. Lusky, On the structure of H v 0 ( D ) and h v 0 ( D ) , Math. Nachr. 159 (1992), 279-289. 
  17. [L2] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320. Zbl0823.46025
  18. [MS] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611. Zbl0439.47022
  19. [N] A. Nicolau, Finite products of interpolating Blaschke products, J. London Math. Soc. 50 (1994), 520-531. Zbl0819.30019
  20. [RS] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. Zbl0197.39001
  21. [R1] W. Rudin, Functional Analysis, McGraw-Hill, 1974. 
  22. [R2] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974. 
  23. [S] K. Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21-39. Zbl0789.30025
  24. [S1] K. Seip, On Korenblum’s density condition for the zero sequences of A - α , J. Anal. Math. 67 (1995), 307-322. Zbl0845.30014
  25. [S2] K. Seip, Developments from nonharmonic Fourier series, in: Proc. ICM 1998, Vol. II, 713-722. Zbl0968.42019
  26. [Sh] J. O. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993. 
  27. [SW] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the disk, Michigan Math. J. 29 (1982), 3-25. 
  28. [SZ] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. Zbl0306.47014
  29. [V] D. Vukotić, Pointwise multiplication operators between Bergman spaces on simply connected domains, Indiana Univ. Math. J., to appear. Zbl0937.47034
  30. [Z] W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. Zbl0426.47002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.