Weighted spaces of holomorphic functions on Banach spaces

D. García; M. Maestre; P. Rueda

Studia Mathematica (2000)

  • Volume: 138, Issue: 1, page 1-24
  • ISSN: 0039-3223

Abstract

top
We deal with weighted spaces H V 0 ( U ) and HV(U) of holomorphic functions defined on a balanced open subset U of a Banach space X. We give conditions on the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute a Schauder decomposition for them. As an application, we study their reflexivity. We also study the existence of a predual. Several examples are provided.

How to cite

top

García, D., Maestre, M., and Rueda, P.. "Weighted spaces of holomorphic functions on Banach spaces." Studia Mathematica 138.1 (2000): 1-24. <http://eudml.org/doc/216687>.

@article{García2000,
abstract = {We deal with weighted spaces $HV_0(U)$ and HV(U) of holomorphic functions defined on a balanced open subset U of a Banach space X. We give conditions on the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute a Schauder decomposition for them. As an application, we study their reflexivity. We also study the existence of a predual. Several examples are provided.},
author = {García, D., Maestre, M., Rueda, P.},
journal = {Studia Mathematica},
keywords = {weighted spaces of holomorphic functions on Banach spaces; seminorm; reflexivity; Schauder decomposition; predual},
language = {eng},
number = {1},
pages = {1-24},
title = {Weighted spaces of holomorphic functions on Banach spaces},
url = {http://eudml.org/doc/216687},
volume = {138},
year = {2000},
}

TY - JOUR
AU - García, D.
AU - Maestre, M.
AU - Rueda, P.
TI - Weighted spaces of holomorphic functions on Banach spaces
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 1
SP - 1
EP - 24
AB - We deal with weighted spaces $HV_0(U)$ and HV(U) of holomorphic functions defined on a balanced open subset U of a Banach space X. We give conditions on the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute a Schauder decomposition for them. As an application, we study their reflexivity. We also study the existence of a predual. Several examples are provided.
LA - eng
KW - weighted spaces of holomorphic functions on Banach spaces; seminorm; reflexivity; Schauder decomposition; predual
UR - http://eudml.org/doc/216687
ER -

References

top
  1. [1] R. Alencar, On reflexivity and basis for P ( m E ) , Proc. Roy. Irish Acad. 85A (1985), 131-138. Zbl0594.46043
  2. [2] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. Zbl0536.46015
  3. [3] J. M. Ansemil and S. Ponte, An example of quasinormable Fréchet function space which is not a Schwartz space, in: Functional Analysis, Holomorphy and Approximation theory, S. Machado (ed.), Lecture Notes in Math. 843, Springer, 1981, 1-8. 
  4. [4] R. Aron, B. Cole and T. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93. Zbl0717.46031
  5. [5] R. Aron, P. Galindo, D. García and M. Maestre, Regularity and algebras of analytic functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), 543-559. Zbl0844.46024
  6. [6] K. D. Bierstedt and J. Bonet, Biduality in Fréchet and (LB)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 113-133. Zbl0804.46007
  7. [7] K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271-297. Zbl0803.46023
  8. [8] K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 137-168. Zbl0934.46027
  9. [9] K. D. Bierstedt, R. G. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. Zbl0599.46026
  10. [10] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79. Zbl0801.46021
  11. [11] O. Blasco and A. Galbis, On Taylor coefficients of entire functions integrable against exponential weights, preprint, Univ. of Valencia, 1998. Zbl0988.46018
  12. [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, Berlin, 1984. 
  13. [13] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. Zbl0484.46044
  14. [14] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., London, 1999. Zbl1034.46504
  15. [15] S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195. Zbl0838.46036
  16. [16] P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type on (DF)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 135-148. Zbl0795.46035
  17. [17] P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type, J. Math. Anal. Appl. 166 (1992), 236-246. Zbl0806.46047
  18. [18] P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, Math. Scand., to appear. Zbl0968.46026
  19. [19] A. Grothendieck, Sur les espaces (F) et(DF), Summa Brasil. Math. 3 (1954), no. 6, 57-122. 
  20. [20] N. J. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392. Zbl0196.13505
  21. [21] G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, Springer, New York, 1969. Zbl0179.17001
  22. [22] W. Lusky, On the Fourier series of unbounded harmonic functions, preprint, Univ. Paderborn, 1998. 
  23. [23] M. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), 429-450. Zbl0663.46041
  24. [24] J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), 867-887. Zbl0747.46038
  25. [25] J. Mujica, Linearization of holomorphic mappings of bounded type, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 149-162. Zbl0795.46036
  26. [26] G. Pólya and G. Szegő, Problems and Theorems in Analysis I, 4th ed., Springer, New York, 1970. Zbl0201.38102
  27. [27] A. Prieto, The bidual of spaces of holomorphic functions in infinitely many variables, Proc. Roy. Irish Acad. 92A (1992), 1-8. Zbl0741.46016
  28. [28] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. Zbl0197.39001
  29. [29] P. Rueda, On the Banach-Dieudonné theorem for spaces of holomorphic functions, Quaestiones Math. 19 (1996), 341-352. Zbl0858.46036
  30. [30] R. Ryan, Application of topological tensor products to infinite dimensional holomorphy, Ph.D. thesis, Trinity College, Dublin, 1980. 
  31. [31] R. Ryan, Holomorphic mappings on 1 , Trans. Amer. Math. Soc. 302 (1987), 797-811. Zbl0637.46045
  32. [32] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981. Zbl0454.26001
  33. [33] W. H. Summer, Dual spaces of weighted spaces, Trans. Amer. Math. Soc. 151 (1970), 323-333. Zbl0203.12401
  34. [34] D. L. Williams, Some Banach spaces of entire functions, Ph.D. thesis, Univ. of Michigan, 1967. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.