Extreme points of the complex binary trilinear ball
Fernando Cobos; Thomas Kühn; Jaak Peetre
Studia Mathematica (2000)
- Volume: 138, Issue: 1, page 81-92
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCobos, Fernando, Kühn, Thomas, and Peetre, Jaak. "Extreme points of the complex binary trilinear ball." Studia Mathematica 138.1 (2000): 81-92. <http://eudml.org/doc/216691>.
@article{Cobos2000,
abstract = {We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space $ℂ^2$. This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space $ℝ^2$. As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.},
author = {Cobos, Fernando, Kühn, Thomas, Peetre, Jaak},
journal = {Studia Mathematica},
keywords = {trilinear form; norm; Hilbert-Schmidt norm; extreme point; extreme point of unit ball},
language = {eng},
number = {1},
pages = {81-92},
title = {Extreme points of the complex binary trilinear ball},
url = {http://eudml.org/doc/216691},
volume = {138},
year = {2000},
}
TY - JOUR
AU - Cobos, Fernando
AU - Kühn, Thomas
AU - Peetre, Jaak
TI - Extreme points of the complex binary trilinear ball
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 1
SP - 81
EP - 92
AB - We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space $ℂ^2$. This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space $ℝ^2$. As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.
LA - eng
KW - trilinear form; norm; Hilbert-Schmidt norm; extreme point; extreme point of unit ball
UR - http://eudml.org/doc/216691
ER -
References
top- [1] A. Cayley, On a theory of determinants, Cambridge Philos. Soc. Trans. 8 (1843), 1-16.
- [2] F. Cobos, T. Kühn and J. Peetre, Schatten-von Neumann classes of multilinear forms, Duke Math. J. 65 (1992), 121-156. Zbl0779.47016
- [3] F. Cobos, T. Kühn and J. Peetre, On -classes of trilinear forms, J. London Math. Soc. (2) 59 (1999), 1003-1022. Zbl0935.47022
- [4] F. Cobos, T. Kühn and J. Peetre, On the structure of bounded trilinear forms, http:/www.maths.lth.se/matematiklu/personal/jaak. Zbl1279.47013
- [5] J. A. Dieudonné and J. B. Carrell, Invariant Theory, Old and New, Academic Press, New York and London, 1971. Zbl0258.14011
- [6] I. M. Gel'fand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994. Zbl0827.14036
- [7] R. Grząślewicz and K. John, Extreme elements of the unit ball of bilinear operators on , Arch. Math. (Basel) 50 (1988), 264-269. Zbl0653.47024
- [8] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. Zbl0045.06201
- [9] E. Schwartz, Über binäre trilineare Formen, Math. Z. 12 (1922), 18-35. Zbl48.0104.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.