Page 1 Next

Displaying 1 – 20 of 79

Showing per page

A note on a class of homeomorphisms between Banach spaces

Piotr Fijałkowski (2005)

Colloquium Mathematicae

This paper deals with homeomorphisms F: X → Y, between Banach spaces X and Y, which are of the form F ( x ) : = F ̃ x ( 2 n + 1 ) where F ̃ : X 2 n + 1 Y is a continuous (2n+1)-linear operator.

A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search

Douglas Bunker, Lixing Han, Shu Hua Zhang (2013)

Applications of Mathematics

The Alternating Nonnegative Least Squares (ANLS) method is commonly used for solving nonnegative tensor factorization problems. In this paper, we focus on algorithmic improvement of this method. We present a Proximal ANLS (PANLS) algorithm to enforce convergence. To speed up the PANLS method, we propose to combine it with a periodic enhanced line search strategy. The resulting algorithm, PANLS/PELS, converges to a critical point of the nonnegative tensor factorization problem under mild conditions....

A Spectral Theory for Tensors

Edinah K. Gnang, Ahmed Elgammal, Vladimir Retakh (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we propose a general spectral theory for tensors. Our proposed factorization decomposes a tensor into a product of orthogonal and scaling tensors. At the same time, our factorization yields an expansion of a tensor as a summation of outer products of lower order tensors. Our proposed factorization shows the relationship between the eigen-objects and the generalised characteristic polynomials. Our framework is based on a consistent multilinear algebra which explains how to generalise...

A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems

M. Billaud-Friess, A. Nouy, O. Zahm (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with a measure of the residual corresponding to the error in a specified solution norm. The residual norm can be designed such that the resulting low-rank approximations are optimal with respect to particular norms of interest, thus allowing to take...

Alcune osservazioni sulle forme trilineari

Federico Bartolozzi (2003)

Bollettino dell'Unione Matematica Italiana

Si studiano, nell'ambito della teoria delle forme trilineari, le cosidette 3 -forme simmetriche, pervenendo ad un teorema di struttura utile per una possibile classificazione, ancora inesistente, di tali 3 -forme.

AnS-type upper bound for the largest singular value of nonnegative rectangular tensors

Jianxing Zhao, Caili Sang (2016)

Open Mathematics

An S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, … n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify the theoretical results.

Bound for the largest singular value of nonnegative rectangular tensors

Jun He, Yan-Min Liu, Hua Ke, Jun-Kang Tian, Xiang Li (2016)

Open Mathematics

In this paper, we give a new bound for the largest singular value of nonnegative rectangular tensors when m = n, which is tighter than the bound provided by Yang and Yang in “Singular values of nonnegative rectangular tensors”, Front. Math. China, 2011, 6, 363-378.

Bounds for the Z-eigenpair of general nonnegative tensors

Qilong Liu, Yaotang Li (2016)

Open Mathematics

In this paper, we consider the Z-eigenpair of a tensor. A lower bound and an upper bound for the Z-spectral radius of a weakly symmetric nonnegative irreducible tensor are presented. Furthermore, upper bounds of Z-spectral radius of nonnegative tensors and general tensors are given. The proposed bounds improve some existing ones. Numerical examples are reported to show the effectiveness of the proposed bounds.

Exploiting tensor rank-one decomposition in probabilistic inference

Petr Savický, Jiří Vomlel (2007)

Kybernetika

We propose a new additive decomposition of probability tables – tensor rank-one decomposition. The basic idea is to decompose a probability table into a series of tables, such that the table that is the sum of the series is equal to the original table. Each table in the series has the same domain as the original table but can be expressed as a product of one- dimensional tables. Entries in tables are allowed to be any real number, i. e. they can be also negative numbers. The possibility of having...

Extreme points of the complex binary trilinear ball

Fernando Cobos, Thomas Kühn, Jaak Peetre (2000)

Studia Mathematica

We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space 2 . This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space 2 . As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.

Finiteness results for Abelian tree models

Jan Draisma, Rob H. Eggermont (2015)

Journal of the European Mathematical Society

Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the Zariski closures of these models are defined by polynomial equations of bounded degree, independent of the tree. Moreover, we show that there exists a polynomial-time membership test for that Zariski closure....

Currently displaying 1 – 20 of 79

Page 1 Next