The continuity of Lie homomorphisms

Bernard Aupetit; Martin Mathieu

Studia Mathematica (2000)

  • Volume: 138, Issue: 2, page 193-199
  • ISSN: 0039-3223

Abstract

top
We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.

How to cite

top

Aupetit, Bernard, and Mathieu, Martin. "The continuity of Lie homomorphisms." Studia Mathematica 138.2 (2000): 193-199. <http://eudml.org/doc/216698>.

@article{Aupetit2000,
abstract = {We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.},
author = {Aupetit, Bernard, Mathieu, Martin},
journal = {Studia Mathematica},
keywords = {Lie homomorphisms; Banach algebras; spectrally bounded maps; separating space; Lie homomorphism; centre modulo radical; surjectivity},
language = {eng},
number = {2},
pages = {193-199},
title = {The continuity of Lie homomorphisms},
url = {http://eudml.org/doc/216698},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Aupetit, Bernard
AU - Mathieu, Martin
TI - The continuity of Lie homomorphisms
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 2
SP - 193
EP - 199
AB - We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.
LA - eng
KW - Lie homomorphisms; Banach algebras; spectrally bounded maps; separating space; Lie homomorphism; centre modulo radical; surjectivity
UR - http://eudml.org/doc/216698
ER -

References

top
  1. [1] B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras, J. Funct. Anal. 47 (1982), 1-6. Zbl0488.46043
  2. [2] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991. 
  3. [3] K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York, 1996. Zbl0847.16001
  4. [4] M. I. Berenguer and A. R. Villena, Continuity of Lie isomorphisms of Banach algebras, Bull. London Math. Soc. 31 (1999), 6-10. Zbl1068.46500
  5. [5] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
  6. [6] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162. Zbl0818.46049
  7. [7] M. Brešar and M. Mathieu, Derivations mapping into the radical, III, J. Funct. Anal. 133 (1995), 21-29. Zbl0897.46045
  8. [8] M. Brešar and P. Šemrl, Spectral characterization of central elements in Banach algebras, Studia Math. 120 (1996), 47-52. 
  9. [9] R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434. Zbl0822.47034
  10. [10] H. G. Dales, On norms of algebras, in: Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Canberra, 1989, 61-96. 
  11. [11] M. Mathieu, Where to find the image of a derivation, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 237-249. Zbl0813.47043
  12. [12] M. Mathieu, Lie mappings of C*-algebras, in: Nonassociative Algebra and Its Applications, R. Costa et al. (eds.), Marcel Dekker, New York, in press. 
  13. [13] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362. Zbl0376.46031
  14. [14] A. Rodríguez Palacios, The uniqueness of the complete norm topology in complete normed nonassociative algebras, J. Funct. Anal. 60 (1985), 1-15. Zbl0602.46055
  15. [15] P. Šemrl, Spectrally bounded linear maps on B(H), Quart. J. Math. Oxford (2) 49 (1998), 87-92. Zbl0958.47016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.