Where to find the image of a derivation
Banach Center Publications (1994)
- Volume: 30, Issue: 1, page 237-249
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topMathieu, Martin. "Where to find the image of a derivation." Banach Center Publications 30.1 (1994): 237-249. <http://eudml.org/doc/262681>.
@article{Mathieu1994,
abstract = {With this paper, we intend to provide an overview of some recent work on a problem on unbounded derivations of Banach algebras that still defies solution, the non-commutative Singer-Wermer conjecture. In particular, we discuss several global as well as local properties of derivations entailing quasinilpotency in the image.},
author = {Mathieu, Martin},
journal = {Banach Center Publications},
keywords = {unbounded derivations of Banach algebras; non-commutative Singer-Wermer conjecture; quasinilpotency in the image},
language = {eng},
number = {1},
pages = {237-249},
title = {Where to find the image of a derivation},
url = {http://eudml.org/doc/262681},
volume = {30},
year = {1994},
}
TY - JOUR
AU - Mathieu, Martin
TI - Where to find the image of a derivation
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 237
EP - 249
AB - With this paper, we intend to provide an overview of some recent work on a problem on unbounded derivations of Banach algebras that still defies solution, the non-commutative Singer-Wermer conjecture. In particular, we discuss several global as well as local properties of derivations entailing quasinilpotency in the image.
LA - eng
KW - unbounded derivations of Banach algebras; non-commutative Singer-Wermer conjecture; quasinilpotency in the image
UR - http://eudml.org/doc/262681
ER -
References
top- [1] C. Apostol, Inner derivations with closed range, Rev. Roumaine Math. Pures Appl. 21 (1976), 242-265.
- [2] C. Apostol and J. G. Stampfli, On derivation ranges, Indiana Univ. Math. J. 25 (1976), 857-869. Zbl0355.47025
- [3] J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math. 35 (1983), 300-310. Zbl0522.16031
- [4] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), 501-510. Zbl0746.46054
- [5] M. Brešar, On a generalization of the notion of centralizing mappings, ibid. 114 (1992), 641-649. Zbl0754.16020
- [6] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162. Zbl0818.46049
- [7] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16. Zbl0703.16020
- [8] M. Brešar and J. Vukman, Derivations on noncommutative Banach algebras, Arch. Math. (Basel) 59 (1992), 363-370. Zbl0807.46049
- [9] C.-L. Chuang and T.-K. Lee, Invariance of minimal prime ideals under derivations, Proc. Amer. Math. Soc. 113 (1991), 613-616. Zbl0733.16012
- [10] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. 16 (1977), 493-500. Zbl0398.46042
- [11] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. Zbl0391.46037
- [12] J. Dixmier, Algèbres envellopantes, Cahier Sci. 27, Gauthier-Villars, Paris, 1974.
- [13] C. K. Fong and A. R. Sourour, On the operator identity , Canad. J. Math. 31 (1979), 845-857. Zbl0368.47024
- [14] R. V. Garimella, On nilpotency of the separating ideal of a derivation, Proc. Amer. Math. Soc. 117 (1993), 167-174. Zbl0794.46042
- [15] K. R. Goodearl and R. B. Warfield, Primitivity in differential operator rings, Math. Z. 180 (1982), 503-524. Zbl0495.16002
- [16] P. R. Halmos, Commutators of operators, II, Amer. J. Math. 76 (1954), 191-198. Zbl0055.10705
- [17] N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. 36 (1935), 875-881. Zbl0012.33704
- [18] B. E. Johnson, Continuity of derivations on commutative Banach algebras, Amer. J. Math. 91 (1969), 1-10. Zbl0181.41103
- [19] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, ibid. 90 (1968), 1067-1073. Zbl0179.18103
- [20] I. Kaplansky, Functional analysis, in: Some Aspects of Analysis and Probability, Surveys Appl. Math. 4, New York, 1958, 1-34.
- [21] D. C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc. 8 (1957), 535-536. Zbl0079.12904
- [22] M. Mathieu, Is there an unbounded Kleinecke-Shirokov theorem?, Sem.ber. Funkt.anal. 18, Tübingen, 1990, 137-143.
- [23] M. Mathieu, On the range of centralising derivations, preprint, 1991.
- [24] M. Mathieu, Posner's second theorem deduced from the first, Proc. Amer. Math. Soc. 114 (1992), 601-602. Zbl0746.16030
- [25] M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), 469-474. Zbl0714.46038
- [26] M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London Math. Soc. 24 (1992), 485-487. Zbl0733.46023
- [27] G. J. Murphy, Aspects of the theory of derivations, this volume, 267-275. Zbl0811.46045
- [28] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. Zbl0082.03003
- [29] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211. Zbl0407.46043
- [30] C. R. Putnam, On the spectra of commutators, Proc. Amer. Math. Soc. 5 (1954), 929-931. Zbl0056.34301
- [31] V. Runde, Automatic continuity of derivations and epimorphisms, Pacific J. Math. 147 (1991), 365-374. Zbl0666.46052
- [32] V. Runde, Problems in automatic continuity, Ph.D. Thesis, Univ. California, Berkeley, 1993.
- [33] V. Runde, Range inclusion results for derivations on noncommutative Banach algebras, Studia Math. 105 (1993), 159-172. Zbl0810.46044
- [34] G. Shilov, On a property of rings of functions, Dokl. Akad. Nauk SSSR 58 (1947), 985-988 (in Russian).
- [35] F. V. Shirokov, Proof of a conjecture of Kaplansky, Uspekhi Mat. Nauk. 11 (1956), 167-168 (in Russian). Zbl0070.34201
- [36] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170.
- [37] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. Zbl0067.35101
- [38] J. G. Stampfli, On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120. Zbl0315.47019
- [39] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460. Zbl0681.47016
- [40] M. P. Thomas, Primitive ideals and derivations on non-commutative Banach algebras, Pacific J. Math. 159 (1993), 139-152. Zbl0739.47014
- [41] Yu. V. Turovskiĭ and V. S. Shul'man, Conditions for massiveness of the range of the derivation of a Banach algebra and associated differential operators, Math. Notes 42 (1987), 669-674.
- [42] I. Vidav, Über eine Vermutung von Kaplansky, Math. Z. 62 (1955), 330.
- [43] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52. Zbl0697.16035
- [44] J. Vukman, On derivations in prime rings and Banach algebras, ibid. 116 (1992), 877-884. Zbl0792.16034
- [45] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. 26 (1991), 83-88. Zbl0813.46037
- [46] H. Wielandt, Über die Unbeschränktheit der Operatoren der Quantenmechanik, Math. Ann. 121 (1949/50), 21. Zbl0035.19903
- [47] J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279. Zbl0205.42102
- [48] A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738-739. Zbl0032.13602
- [49] B. Yood, Continuous homomorphisms and derivations on Banach algebras, in: F. Greenleaf and D. Gulick (eds.), Banach Algebras and Several Complex Variables, Contemp. Math. 32, Amer. Math. Soc., Providence, R.I., 1984, 279-284.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.