# A geometrical solution of a problem on wavelets

Studia Mathematica (2000)

- Volume: 139, Issue: 3, page 261-273
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topAyaghe, Antoine. "A geometrical solution of a problem on wavelets." Studia Mathematica 139.3 (2000): 261-273. <http://eudml.org/doc/216722>.

@article{Ayaghe2000,

abstract = {We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for $L^2(ℝ^2)$ of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for $L^2(ℝ^2)$, of any regularity, are nonseparable},

author = {Ayaghe, Antoine},

journal = {Studia Mathematica},

keywords = {bivariate wavelets; non-separable wavelet basis; orthonormal wavelet basis; compact support; wavelets of high regularity},

language = {eng},

number = {3},

pages = {261-273},

title = {A geometrical solution of a problem on wavelets},

url = {http://eudml.org/doc/216722},

volume = {139},

year = {2000},

}

TY - JOUR

AU - Ayaghe, Antoine

TI - A geometrical solution of a problem on wavelets

JO - Studia Mathematica

PY - 2000

VL - 139

IS - 3

SP - 261

EP - 273

AB - We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for $L^2(ℝ^2)$ of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for $L^2(ℝ^2)$, of any regularity, are nonseparable

LA - eng

KW - bivariate wavelets; non-separable wavelet basis; orthonormal wavelet basis; compact support; wavelets of high regularity

UR - http://eudml.org/doc/216722

ER -

## References

top- [AK] S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ. 25, Springer, 1992. Zbl0808.14045
- [A1] A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for ${L}^{2}\left({\mathbb{R}}^{2}\right)$ of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), 37-58. Zbl0923.42021
- [A2] A. Ayache, Bases multivariées d'ondelettes, orthonormales, non séparables, à support compact et de régularité arbitraire, Phd Thesis, Ceremade, Univ. Paris Dauphine, 1997.
- [BW] E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in ${\mathbb{R}}^{2}$, SIAM J. Math. Anal. 30 (1999), 678-697. Zbl0946.42025
- [CHM] C. Cabrelli, C. Heil and U. Molter, Self-similarity and multiwavelets in higher dimensions, preprint, 1999.
- [C] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. Zbl0736.42021
- [CGV] A. Cohen, K. Gröchenig and L. F. Villemoes, Regularity of multivariate refinable functions, preprint. Zbl0937.42017
- [D] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
- [J] R. Q. Jia, Characterization of smoothness of multivariate refinable functions in sobolev spaces, preprint. Zbl1052.42029
- [KLe] J. P. Kahane and P. G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach, 1995.
- [L] W. M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), 1898-1901. Zbl0708.46020
- [LR] W. M. Lawton and H. L. Resnikoff, Multidimensional wavelet bases, preprint, 1991.
- [M] Y. Meyer, Ondelettes et opérateurs, Hermann, 1990. Zbl0694.41037
- [RW] H. L. Resnikoff and R. O. Wells Jr., Wavelet Analysis: The Scalable Structure of Information, Springer, 1998.
- [W] R. O. Wells Jr., Parametrizing smooth compactly supported wavelets, Trans. Amer. Math. Soc. 338 (1993), 919-931. Zbl0777.41029

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.