A geometrical solution of a problem on wavelets

Antoine Ayaghe

Studia Mathematica (2000)

  • Volume: 139, Issue: 3, page 261-273
  • ISSN: 0039-3223

Abstract

top
We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for L 2 ( 2 ) of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for L 2 ( 2 ) , of any regularity, are nonseparable

How to cite

top

Ayaghe, Antoine. "A geometrical solution of a problem on wavelets." Studia Mathematica 139.3 (2000): 261-273. <http://eudml.org/doc/216722>.

@article{Ayaghe2000,
abstract = {We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for $L^2(ℝ^2)$ of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for $L^2(ℝ^2)$, of any regularity, are nonseparable},
author = {Ayaghe, Antoine},
journal = {Studia Mathematica},
keywords = {bivariate wavelets; non-separable wavelet basis; orthonormal wavelet basis; compact support; wavelets of high regularity},
language = {eng},
number = {3},
pages = {261-273},
title = {A geometrical solution of a problem on wavelets},
url = {http://eudml.org/doc/216722},
volume = {139},
year = {2000},
}

TY - JOUR
AU - Ayaghe, Antoine
TI - A geometrical solution of a problem on wavelets
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 3
SP - 261
EP - 273
AB - We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for $L^2(ℝ^2)$ of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for $L^2(ℝ^2)$, of any regularity, are nonseparable
LA - eng
KW - bivariate wavelets; non-separable wavelet basis; orthonormal wavelet basis; compact support; wavelets of high regularity
UR - http://eudml.org/doc/216722
ER -

References

top
  1. [AK] S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ. 25, Springer, 1992. Zbl0808.14045
  2. [A1] A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for L 2 ( 2 ) of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), 37-58. Zbl0923.42021
  3. [A2] A. Ayache, Bases multivariées d'ondelettes, orthonormales, non séparables, à support compact et de régularité arbitraire, Phd Thesis, Ceremade, Univ. Paris Dauphine, 1997. 
  4. [BW] E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in 2 , SIAM J. Math. Anal. 30 (1999), 678-697. Zbl0946.42025
  5. [CHM] C. Cabrelli, C. Heil and U. Molter, Self-similarity and multiwavelets in higher dimensions, preprint, 1999. 
  6. [C] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. Zbl0736.42021
  7. [CGV] A. Cohen, K. Gröchenig and L. F. Villemoes, Regularity of multivariate refinable functions, preprint. Zbl0937.42017
  8. [D] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
  9. [J] R. Q. Jia, Characterization of smoothness of multivariate refinable functions in sobolev spaces, preprint. Zbl1052.42029
  10. [KLe] J. P. Kahane and P. G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach, 1995. 
  11. [L] W. M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), 1898-1901. Zbl0708.46020
  12. [LR] W. M. Lawton and H. L. Resnikoff, Multidimensional wavelet bases, preprint, 1991. 
  13. [M] Y. Meyer, Ondelettes et opérateurs, Hermann, 1990. Zbl0694.41037
  14. [RW] H. L. Resnikoff and R. O. Wells Jr., Wavelet Analysis: The Scalable Structure of Information, Springer, 1998. 
  15. [W] R. O. Wells Jr., Parametrizing smooth compactly supported wavelets, Trans. Amer. Math. Soc. 338 (1993), 919-931. Zbl0777.41029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.