Subspaces of the Bourgain-Delbaen space

Richard Haydon

Studia Mathematica (2000)

  • Volume: 139, Issue: 3, page 275-293
  • ISSN: 0039-3223

Abstract

top
It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space X a , b has a subspace isomorphic to some p .

How to cite

top

Haydon, Richard. "Subspaces of the Bourgain-Delbaen space." Studia Mathematica 139.3 (2000): 275-293. <http://eudml.org/doc/216723>.

@article{Haydon2000,
abstract = {It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space $X_\{a,b\}$ has a subspace isomorphic to some $ℓ^p$.},
author = {Haydon, Richard},
journal = {Studia Mathematica},
keywords = {$ℓ^1$-predual; $ℒ^∞$-space; $ℓ^p$-space; Bourgain-Delbaen space; separable -spaces; Radon-Nikodým property; unconditional basic sequence},
language = {eng},
number = {3},
pages = {275-293},
title = {Subspaces of the Bourgain-Delbaen space},
url = {http://eudml.org/doc/216723},
volume = {139},
year = {2000},
}

TY - JOUR
AU - Haydon, Richard
TI - Subspaces of the Bourgain-Delbaen space
JO - Studia Mathematica
PY - 2000
VL - 139
IS - 3
SP - 275
EP - 293
AB - It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space $X_{a,b}$ has a subspace isomorphic to some $ℓ^p$.
LA - eng
KW - $ℓ^1$-predual; $ℒ^∞$-space; $ℓ^p$-space; Bourgain-Delbaen space; separable -spaces; Radon-Nikodým property; unconditional basic sequence
UR - http://eudml.org/doc/216723
ER -

References

top
  1. [1] D. Alspach, The dual of the Bourgain-Delbaen space, preprint, Oklahoma State Univ., 1998. 
  2. [2] S. M. Bates, On smooth non-linear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220. Zbl0898.46044
  3. [3] M. Boddington, On a certain class of recursively defined norms, in preparation. 
  4. [4] J. Bourgain, New Classes of p -Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981. 
  5. [5] J. Bourgain and F. Delbaen, A class of special -spaces, Acta Math. 145 (1980), 155-176. Zbl0466.46024
  6. [6] G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint. Zbl0981.46007
  7. [7] P. Hájek, Smooth functions on c 0 , Israel J. Math. 104 (1998), 17-28. Zbl0940.46023
  8. [8] W. B. Johnson, A uniformly convex Banach space which contains no p , Compositio Math. 29 (1974), 179-190. Zbl0301.46013
  9. [9] W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470. Zbl0864.46008
  10. [10] B. Maurey, V. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, in: Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 149-175. Zbl0872.46013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.