A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains

Michał Wojciechowski

Studia Mathematica (2000)

  • Volume: 140, Issue: 3, page 273-287
  • ISSN: 0039-3223

Abstract

top
It is proved that if m : d satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the H 1 space on the product domain d 1 × . . . × d k . This implies an estimate of the norm N ( m , L p ( d ) of the multiplier transformation of m on L p ( d ) as p→1. Precisely we get N ( m , L p ( d ) ) ( p - 1 ) - k . This bound is the best possible in general.

How to cite

top

Wojciechowski, Michał. "A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains." Studia Mathematica 140.3 (2000): 273-287. <http://eudml.org/doc/216767>.

@article{Wojciechowski2000,
abstract = {It is proved that if $m : ℝ^d → ℂ$ satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the $H^1$ space on the product domain $ℝ^\{d_1\}×...×ℝ^\{d_k\}$. This implies an estimate of the norm $N(m,L^p(ℝ^d)$ of the multiplier transformation of m on $L^p(ℝ^d)$ as p→1. Precisely we get $N(m,L^p(ℝ^d))≲(p-1)^\{-k\}$. This bound is the best possible in general.},
author = {Wojciechowski, Michał},
journal = {Studia Mathematica},
keywords = {Fourier multiplier; Hardy space on product domain; Marcinkiewicz-Hörmander condition},
language = {eng},
number = {3},
pages = {273-287},
title = {A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains},
url = {http://eudml.org/doc/216767},
volume = {140},
year = {2000},
}

TY - JOUR
AU - Wojciechowski, Michał
TI - A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 3
SP - 273
EP - 287
AB - It is proved that if $m : ℝ^d → ℂ$ satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the $H^1$ space on the product domain $ℝ^{d_1}×...×ℝ^{d_k}$. This implies an estimate of the norm $N(m,L^p(ℝ^d)$ of the multiplier transformation of m on $L^p(ℝ^d)$ as p→1. Precisely we get $N(m,L^p(ℝ^d))≲(p-1)^{-k}$. This bound is the best possible in general.
LA - eng
KW - Fourier multiplier; Hardy space on product domain; Marcinkiewicz-Hörmander condition
UR - http://eudml.org/doc/216767
ER -

References

top
  1. E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), submitted to Mem. Amer. Math. Soc. Zbl0990.42005
  2. [B] J. Bourgain, On the behavior of the constant in the Littlewood-Paley inequality, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, 202-208. 
  3. [C] L. Carleson, Two remarks on H 1 and BMO, Adv. Math. 22 (1976), 269-277. Zbl0357.46058
  4. S. Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 455-468. Zbl0513.42019
  5. S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H p theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. Zbl0557.42007
  6. [D] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. Zbl0056.34601
  7. [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977. 
  8. [FS] C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  9. [F1] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), 109-130. Zbl0644.42017
  10. [F2] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210. 
  11. [Hö] L. Hö rmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983. 
  12. [Lu] S. Z. Lu, Four Lectures on Real H p Spaces, World Sci., 1995. 
  13. [M] V. G. Maz'ya, Sobolev Spaces, Leningrad Univ. Press, 1985. 
  14. [Mu] P. F. X. Müller, Holomorphic martingales and interpolation between Hardy spaces, J. Anal. Math. 61 (1993), 327-337. Zbl0796.60051
  15. [MC] C. A. McCarthy, c p , Israel J. Math. 5 (1967), 249-271. 
  16. [P] A. Pełczyński, Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, in: Analysis at Urbana 1 (Proceedings of Special Year in Modern Analysis at the Univ. of Illinois, 1986-87), London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press 1989, 395-415. 
  17. [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501
  18. [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. Zbl0472.46041
  19. [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. Zbl0621.42001
  20. [X] Q. Xu, Some properties of the quotient space L 1 ( T d ) / H 1 ( D d ) , Illinois J. Math. 37 (1993), 437-454. Zbl0792.46015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.