A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
Studia Mathematica (2000)
- Volume: 140, Issue: 3, page 273-287
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWojciechowski, Michał. "A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains." Studia Mathematica 140.3 (2000): 273-287. <http://eudml.org/doc/216767>.
@article{Wojciechowski2000,
abstract = {It is proved that if $m : ℝ^d → ℂ$ satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the $H^1$ space on the product domain $ℝ^\{d_1\}×...×ℝ^\{d_k\}$. This implies an estimate of the norm $N(m,L^p(ℝ^d)$ of the multiplier transformation of m on $L^p(ℝ^d)$ as p→1. Precisely we get $N(m,L^p(ℝ^d))≲(p-1)^\{-k\}$. This bound is the best possible in general.},
author = {Wojciechowski, Michał},
journal = {Studia Mathematica},
keywords = {Fourier multiplier; Hardy space on product domain; Marcinkiewicz-Hörmander condition},
language = {eng},
number = {3},
pages = {273-287},
title = {A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains},
url = {http://eudml.org/doc/216767},
volume = {140},
year = {2000},
}
TY - JOUR
AU - Wojciechowski, Michał
TI - A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 3
SP - 273
EP - 287
AB - It is proved that if $m : ℝ^d → ℂ$ satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the $H^1$ space on the product domain $ℝ^{d_1}×...×ℝ^{d_k}$. This implies an estimate of the norm $N(m,L^p(ℝ^d)$ of the multiplier transformation of m on $L^p(ℝ^d)$ as p→1. Precisely we get $N(m,L^p(ℝ^d))≲(p-1)^{-k}$. This bound is the best possible in general.
LA - eng
KW - Fourier multiplier; Hardy space on product domain; Marcinkiewicz-Hörmander condition
UR - http://eudml.org/doc/216767
ER -
References
top- E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), submitted to Mem. Amer. Math. Soc. Zbl0990.42005
- [B] J. Bourgain, On the behavior of the constant in the Littlewood-Paley inequality, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, 202-208.
- [C] L. Carleson, Two remarks on and BMO, Adv. Math. 22 (1976), 269-277. Zbl0357.46058
- S. Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 455-468. Zbl0513.42019
- S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. Zbl0557.42007
- [D] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. Zbl0056.34601
- [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
- [FS] C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [F1] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), 109-130. Zbl0644.42017
- [F2] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210.
- [Hö] L. Hö rmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
- [Lu] S. Z. Lu, Four Lectures on Real Spaces, World Sci., 1995.
- [M] V. G. Maz'ya, Sobolev Spaces, Leningrad Univ. Press, 1985.
- [Mu] P. F. X. Müller, Holomorphic martingales and interpolation between Hardy spaces, J. Anal. Math. 61 (1993), 327-337. Zbl0796.60051
- [MC] C. A. McCarthy, , Israel J. Math. 5 (1967), 249-271.
- [P] A. Pełczyński, Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, in: Analysis at Urbana 1 (Proceedings of Special Year in Modern Analysis at the Univ. of Illinois, 1986-87), London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press 1989, 395-415.
- [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501
- [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. Zbl0472.46041
- [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. Zbl0621.42001
- [X] Q. Xu, Some properties of the quotient space , Illinois J. Math. 37 (1993), 437-454. Zbl0792.46015
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.