A class of Fourier multipliers on H¹(ℝ²)
Studia Mathematica (2000)
- Volume: 140, Issue: 3, page 289-298
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWojciechowski, Michał. "A class of Fourier multipliers on H¹(ℝ²)." Studia Mathematica 140.3 (2000): 289-298. <http://eudml.org/doc/216768>.
@article{Wojciechowski2000,
abstract = {An integral criterion for being an $H^1(ℝ^2)$ Fourier multiplier is proved. It is applied in particular to suitable regular functions which depend on the product of variables.},
author = {Wojciechowski, Michał},
journal = {Studia Mathematica},
keywords = {Fourier multipliers; Hardy space; boundedness},
language = {eng},
number = {3},
pages = {289-298},
title = {A class of Fourier multipliers on H¹(ℝ²)},
url = {http://eudml.org/doc/216768},
volume = {140},
year = {2000},
}
TY - JOUR
AU - Wojciechowski, Michał
TI - A class of Fourier multipliers on H¹(ℝ²)
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 3
SP - 289
EP - 298
AB - An integral criterion for being an $H^1(ℝ^2)$ Fourier multiplier is proved. It is applied in particular to suitable regular functions which depend on the product of variables.
LA - eng
KW - Fourier multipliers; Hardy space; boundedness
UR - http://eudml.org/doc/216768
ER -
References
top- [BBPW] E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), Mem. Amer. Math. Soc., to appear. Zbl0990.42005
- [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
- [FS] C. Fefferman and E. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [F] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210. Zbl0834.42010
- [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
- [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
- [MZ] J. Marcinkiewicz and A. Zygmund, Quelques inégalités pour les opérations linéaires, Fund. Math. 32 (1939), 115-121. Zbl65.0506.02
- [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. Zbl0621.42001
- [W1] M. Wojciechowski, A Marcinkiewicz type multiplier theorem for spaces on product domains, this issue, 273-287. Zbl0982.42004
- [W2] M. Wojciechowski, A necessary condition for weak type (1,1) of multiplier transforms, Canad. J. Math., to appear.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.