Representations of the spaces
Studia Mathematica (2000)
- Volume: 142, Issue: 2, page 135-148
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topAlbanese, A., and Moscatelli, V.. "Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$." Studia Mathematica 142.2 (2000): 135-148. <http://eudml.org/doc/216793>.
@article{Albanese2000,
abstract = {We give a representation of the spaces $C^∞(ℝ^N) ∩ H^\{k,p\}(ℝ^N)$ as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that $C^∞(ℝ^N) ∩ H^\{k,2\}(ℝ^N)$ is isomorphic to the sequence space $s^\{ℕ\} ∩ l^2(l^2)$, thereby showing that the isomorphy class does not depend on the dimension N if p=2.},
author = {Albanese, A., Moscatelli, V.},
journal = {Studia Mathematica},
keywords = {Fréchet structure; isomorphism; isomorphy class; Fréchet space; Montel subspaces},
language = {eng},
number = {2},
pages = {135-148},
title = {Representations of the spaces $C^∞(ℝ^N) ∩ H^\{k,p\}(ℝ^N)$},
url = {http://eudml.org/doc/216793},
volume = {142},
year = {2000},
}
TY - JOUR
AU - Albanese, A.
AU - Moscatelli, V.
TI - Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 2
SP - 135
EP - 148
AB - We give a representation of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$ as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that $C^∞(ℝ^N) ∩ H^{k,2}(ℝ^N)$ is isomorphic to the sequence space $s^{ℕ} ∩ l^2(l^2)$, thereby showing that the isomorphy class does not depend on the dimension N if p=2.
LA - eng
KW - Fréchet structure; isomorphism; isomorphy class; Fréchet space; Montel subspaces
UR - http://eudml.org/doc/216793
ER -
References
top- [A] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [AA] A. A. Albanese, Montel subspaces of Fréchet spaces of Moscatelli type, Glasgow Math. J. 39 (1997), 345-350. Zbl0923.46011
- [AMM1] A. A. Albanese, G. Metafune and V. B. Moscatelli, Representations of the spaces , Math. Proc. Cambridge Philos. Soc. 120 (1996), 489-498.
- [AMM2] A. A. Albanese, G. Metafune and V. B. Moscatelli, Representations of the spaces , in: Functional Analysis (Trier, 1994), S. Dierolf, S. Dineen and P. Domański (eds.), Walter de Gruyter, 1996, 11-20.
- [AMM3] A. A. Albanese, G. Metafune and V. B. Moscatelli, On the spaces , Arch. Math. (Basel) 68 (1997), 228-232. Zbl0876.46022
- [AM] A. A. Albanese and V. B. Moscatelli, A method of construction of Fréchet spaces, in: Functional Analysis, P. K. Jain (ed.), Narosa Publishing House, New Delhi, 1998, 1-8. Zbl0949.46002
- [BB] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180. Zbl0688.46001
- [B] J. Bonet, Intersections of Fréchet Schwartz spaces and their duals, Arch. Math. (Basel) 68 (1997), 320-325. Zbl0916.46001
- [BD] J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complut. Madrid 2 (suppl.) (1989), 77-92. Zbl0757.46001
- [BT] J. Bonet and J. Taskinen, Non-distinguished Fréchet function spaces, Bull. Soc. Roy. Sci. Liège 58 (1989), 483-490. Zbl0711.46001
- [DK] S. Dierolf and Khin Aye Aye, On projective limits of Moscatelli type, in: Functional Analysis (Trier, 1994), S. Dierolf, S. Dineen and P. Domański (eds.), Walter de Gruyter, 1996, 105-118. Zbl0902.46001
- [MT] P. Mattila and J. Taskinen, Remarks on bases in a Fréchet function space, Rev. Mat. Univ. Complut. Madrid 6 (1993), 93-99. Zbl0814.46005
- [M] V. B. Moscatelli, Fréchet spaces without continuous norms and without bases, Bull. London Math. Soc. 12 (1980), 63-66. Zbl0407.46002
- [S] R. T. Seeley, Extension of functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626. Zbl0127.28403
- [T1] J. Taskinen, A continuous surjection from the unit interval onto the unit square, Rev. Mat. Univ. Complut. Madrid 6 (1993), 101-120. Zbl0804.46027
- [T2] J. Taskinen, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 75-88. Zbl0632.46002
- [V1] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67, 1982.
- [V2] M. Valdivia, A characterization of totally reflexive Fréchet spaces, Math. Z. 200 (1989), 327-346. Zbl0683.46008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.