Solving dual integral equations on Lebesgue spaces
Óscar Ciaurri; José Guadalupe; Mario Pérez; Juan Varona
Studia Mathematica (2000)
- Volume: 142, Issue: 3, page 253-267
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCiaurri, Óscar, et al. "Solving dual integral equations on Lebesgue spaces." Studia Mathematica 142.3 (2000): 253-267. <http://eudml.org/doc/216802>.
@article{Ciaurri2000,
abstract = {We study dual integral equations associated with Hankel transforms, that is, dual integral equations of Titchmarsh’s type. We reformulate these equations giving a better description in terms of continuous operators on $L^p$ spaces, and we solve them in these spaces. The solution is given both as an operator described in terms of integrals and as a series $∑_\{n=0\}^\{∞\} c_n J_\{μ+2n+1\}$ which converges in the $L^p$-norm and almost everywhere, where $J_ν$ denotes the Bessel function of order ν. Finally, we study the uniqueness of the solution.},
author = {Ciaurri, Óscar, Guadalupe, José, Pérez, Mario, Varona, Juan},
journal = {Studia Mathematica},
keywords = {Fourier series; Hankel transform; Bessel functions; dual integral equations; dual integral equations of Titchmarsh type; uniqueness; Jacobi polynomials; Fourier-Neumann series; convergence; almost everywhere convergence},
language = {eng},
number = {3},
pages = {253-267},
title = {Solving dual integral equations on Lebesgue spaces},
url = {http://eudml.org/doc/216802},
volume = {142},
year = {2000},
}
TY - JOUR
AU - Ciaurri, Óscar
AU - Guadalupe, José
AU - Pérez, Mario
AU - Varona, Juan
TI - Solving dual integral equations on Lebesgue spaces
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 3
SP - 253
EP - 267
AB - We study dual integral equations associated with Hankel transforms, that is, dual integral equations of Titchmarsh’s type. We reformulate these equations giving a better description in terms of continuous operators on $L^p$ spaces, and we solve them in these spaces. The solution is given both as an operator described in terms of integrals and as a series $∑_{n=0}^{∞} c_n J_{μ+2n+1}$ which converges in the $L^p$-norm and almost everywhere, where $J_ν$ denotes the Bessel function of order ν. Finally, we study the uniqueness of the solution.
LA - eng
KW - Fourier series; Hankel transform; Bessel functions; dual integral equations; dual integral equations of Titchmarsh type; uniqueness; Jacobi polynomials; Fourier-Neumann series; convergence; almost everywhere convergence
UR - http://eudml.org/doc/216802
ER -
References
top- [1] Ó. Ciaurri, J. J. Guadalupe, M. Pérez and J. L. Varona, Mean and almost everywhere convergence of Fourier-Neumann series, J. Math. Anal. Appl. 236 (1999), 125-147. Zbl0953.42015
- [2] A. J. Durán, On Hankel transform, Proc. Amer. Math. Soc. 110 (1990), 417-424. Zbl0711.46034
- [3] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953. Zbl0051.30303
- [4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, 1954.
- [5] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. Zbl0059.09901
- [6] P. Heywood and P. G. Rooney, A weighted norm inequality for the Hankel transformation, Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 45-50. Zbl0564.44003
- [7] H. Hochstadt, Integral Equations, Wiley, New York, 1973.
- [8] B. Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23 (1969), 306-310. Zbl0182.39701
- [9] P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Canad. J. Math. 25 (1973), 1090-1102. Zbl0277.44005
- [10] I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951. Republication: Dover, New York, 1995.
- [11] K. Stempak, Transplanting maximal inequalities between Laguerre and Hankel multipliers, Monatsh. Math. 122 (1996), 187-197. Zbl0866.42006
- [12] K. Stempak and W. Trebels, Hankel multipliers and transplantation operators, Studia Math. 126 (1997), 51-66. Zbl1030.42009
- [13] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.
- [14] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, Oxford, New York, 1937. Zbl0017.40404
- [15] C. J. Tranter, Integral Transforms in Mathematical Physics, 3th ed., Methuen, London, 1966. Zbl0135.16002
- [16] C. J. Tranter, Bessel Functions with Some Physical Applications, English Univ. Press, London, 1968. Zbl0174.36203
- [17] J. L. Varona, Fourier series of functions whose Hankel transform is supported on [0,1], Constr. Approx. 10 (1994), 65-75. Zbl0803.42015
- [18] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1966. Zbl0174.36202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.