Numerical index of vector-valued function spaces
Studia Mathematica (2000)
- Volume: 142, Issue: 3, page 269-280
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMartín, Miguel, and Payá, Rafael. "Numerical index of vector-valued function spaces." Studia Mathematica 142.3 (2000): 269-280. <http://eudml.org/doc/216803>.
@article{Martín2000,
abstract = {We show that the numerical index of a $c_0$-, $l_1$-, or $l_∞$-sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and $L_1(μ,X)$ (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.},
author = {Martín, Miguel, Payá, Rafael},
journal = {Studia Mathematica},
keywords = {numerical index; Daugavet property; sum of Banach spaces; vector-valued function space; numerical radius},
language = {eng},
number = {3},
pages = {269-280},
title = {Numerical index of vector-valued function spaces},
url = {http://eudml.org/doc/216803},
volume = {142},
year = {2000},
}
TY - JOUR
AU - Martín, Miguel
AU - Payá, Rafael
TI - Numerical index of vector-valued function spaces
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 3
SP - 269
EP - 280
AB - We show that the numerical index of a $c_0$-, $l_1$-, or $l_∞$-sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and $L_1(μ,X)$ (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.
LA - eng
KW - numerical index; Daugavet property; sum of Banach spaces; vector-valued function space; numerical radius
UR - http://eudml.org/doc/216803
ER -
References
top- [1] Y. A. Abramovich, New classes of spaces on which compact operators satisfy the Daugavet equation, J. Operator Theory 25 (1991), 331-345. Zbl0833.47023
- [2] Y. A. Abramovich, C. D. Aliprantis and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), 215-230. Zbl0770.47005
- [3] C. Aparicio, F. Oca na, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. Zbl0604.46021
- [4] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere in Banach algebras, Ann. of Math. 62 (1955), 217-229. Zbl0067.35002
- [5] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. Zbl0207.44802
- [6] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. Zbl0262.47001
- [7] I. K. Daugavet, A property of completely continuous operators in the space C, Uspekhi Mat. Nauk 18 (1963), no. 5, 157-158 (in Russian). Zbl0138.38603
- [8] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- [9] J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481-488. Zbl0197.10402
- [10] B. W. Glickfeld, On an inequality of Banach algebra geometry and semi-inner-product space theory, Illinois J. Math. 14 (1970), 76-81. Zbl0189.13304
- [11] K. E. Gustafson and D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
- [12] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin et D. Werner, Espaces de Banach ayant la propriété de Daugavet, C. R. Acad. Sci. Paris Sér. I 325 (1997), 1291-1294.
- [13] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin et D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855-873. Zbl0938.46016
- [14] Å. Lima, On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes, Ark. Mat. 19 (1981), 97-116. Zbl0464.46006
- [15] G. López, M. Martín and R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207-212. Zbl0921.46015
- [16] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43. Zbl0102.32701
- [17] C. M. McGregor, Finite dimensional normed linear spaces with numerical index 1, J. London Math. Soc. (2) 3 (1971), 717-721. Zbl0212.14304
- [18] D. Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal. 143 (1997), 117-128. Zbl0899.47025
- [19] P. Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc. 115 (1992), 1047-1052. Zbl0758.46006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.