Page 1 Next

Displaying 1 – 20 of 85

Showing per page

A class of tridiagonal operators associated to some subshifts

Christian Hernández-Becerra, Benjamín A. Itzá-Ortiz (2016)

Open Mathematics

We consider a class of tridiagonal operators induced by not necessary pseudoergodic biinfinite sequences. Using only elementary techniques we prove that the numerical range of such operators is contained in the convex hull of the union of the numerical ranges of the operators corresponding to the constant biinfinite sequences; whilst the other inclusion is shown to hold when the constant sequences belong to the subshift generated by the given biinfinite sequence. Applying recent results by S. N....

A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix

Fuad Kittaneh (2003)

Studia Mathematica

It is shown that if A is a bounded linear operator on a complex Hilbert space, then w ( A ) 1 / 2 ( | | A | | + | | A ² | | 1 / 2 ) , where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.

Alcune osservazioni sul rango numerico per operatori non lineari

Jürgen Appell, G. Conti, Paola Santucci (1999)

Mathematica Bohemica

We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984).

An alternative polynomial Daugavet property

Elisa R. Santos (2014)

Studia Mathematica

We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies m a x ω | | I d + ω P | | = 1 + | | P | | . We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely L ( μ , X ) and C(K,X), where X has the APDP.

Computing the numerical range of Krein space operators

Natalia Bebiano, J. da Providência, A. Nata, J.P. da Providência (2015)

Open Mathematics

Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined...

Convexity around the Unit of a Banach Algebra

Kadets, Vladimir, Katkova, Olga, Martín, Miguel, Vishnyakova, Anna (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.We estimate the (midpoint) modulus of convexity at the unit 1 of a Banach algebra A showing that inf {max±||1 ± x|| − 1 : x ∈ A, ||x||=ε} ≥ (π/4e)ε²+o(ε²) as ε → 0. We also give a characterization of two-dimensional subspaces of Banach algebras containing the identity in terms of polynomial inequalities.

Domaine Numérique du produit AB avec A normal

Kaadoud, Mohamed Chraïbi (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 18B30, 47A12.Let A, B be two linear operators on a complex Hilbert space H. We extend a Bouldin's result (1969) conserning W(AB) - the numerical range of the product AB. We show, when AB = BA and A is normal, than W(AB).

Currently displaying 1 – 20 of 85

Page 1 Next