The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures

Maximilian Thaler

Studia Mathematica (2000)

  • Volume: 143, Issue: 2, page 103-119
  • ISSN: 0039-3223

Abstract

top
We determine the asymptotic behaviour of the iterates of the Perron-Frobenius operator for specific interval maps with an indifferent fixed point which gives rise to an infinite invariant measure.

How to cite

top

Thaler, Maximilian. "The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures." Studia Mathematica 143.2 (2000): 103-119. <http://eudml.org/doc/216811>.

@article{Thaler2000,
abstract = {We determine the asymptotic behaviour of the iterates of the Perron-Frobenius operator for specific interval maps with an indifferent fixed point which gives rise to an infinite invariant measure.},
author = {Thaler, Maximilian},
journal = {Studia Mathematica},
keywords = {Perron-Frobenius operator; interval map; invariant measure},
language = {eng},
number = {2},
pages = {103-119},
title = {The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures},
url = {http://eudml.org/doc/216811},
volume = {143},
year = {2000},
}

TY - JOUR
AU - Thaler, Maximilian
TI - The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 2
SP - 103
EP - 119
AB - We determine the asymptotic behaviour of the iterates of the Perron-Frobenius operator for specific interval maps with an indifferent fixed point which gives rise to an infinite invariant measure.
LA - eng
KW - Perron-Frobenius operator; interval map; invariant measure
UR - http://eudml.org/doc/216811
ER -

References

top
  1. [A0] J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., 1997. 
  2. [A1] J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Anal. Math. 39 (1981), 203-234. Zbl0499.28013
  3. [A2] J. Aaronson, Random f-expansions, Ann. Probab. 14 (1986), 1037-1057. Zbl0658.60050
  4. [BG] A. Boyarsky and P. Góra, Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension, Birkhäuser, 1997. Zbl0893.28013
  5. [Fe] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, 1971. 
  6. [Fr] N. A. Friedman, Mixing transformations in an infinite measure space, in: Studies in Probability and Ergodic Theory, Adv. Math. Suppl. Stud. 2, Academic Press, 1978, 167-184. 
  7. [HK] A. B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc. 110 (1964), 136-151. Zbl0122.29804
  8. [H] E. Hopf, Ergodentheorie, Springer, 1937. 
  9. [LY] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. Zbl0298.28015
  10. [LM] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Springer, 1994. 
  11. [Kr] K. Krickeberg, Strong mixing properties of Markov chains with infinite invariant measure, in: Proc. Fifth Berkeley Sympos. Math. Statist. Probab. 2, Part II, Univ. of California Press, 1965, 431-445. 
  12. [M] P. Manneville, Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems, J. Phys. 41 (1980), 1235-1243. 
  13. [P] F. Papangelou, Strong ratio limits, R-recurrence and mixing properties of discrete parameter Markov processes, Z. Wahrsch. Verw. Gebiete 8 (1967), 259-297. Zbl0154.42902
  14. [R] M. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80. Zbl0575.28011
  15. [Sch1] F. Schweiger, Invariant measures for piecewise linear fractional maps, J. Austral. Math. Soc. Ser. A 34 (1983), 55-59. Zbl0514.28012
  16. [Sch2] F. Schweiger, Ergodic Theory of Fibered Systems and Metric Number Theory, Clarendon Press, 1995. 
  17. [T1] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math. 37 (1980), 303-314. Zbl0447.28016
  18. [T2] M. Thaler, Transformations on [0,1] with infinite invariant measures, ibid. 46 (1983), 67-96. 
  19. [T3] M. Thaler, The iteration of the Perron-Frobenius operator when the invariant measure is infinite: An example, manuscript, Salzburg, 1986. 
  20. [T4] M. Thaler, Arc-sine limit laws for a one-parameter family of f-expansions, manuscript, Salzburg, 1993. 
  21. [T5] M. Thaler, A limit theorem for the Perron-Frobenius operator of transformations on [0,1] with indifferent fixed points, Israel J. Math. 91 (1995), 111-127. Zbl0846.28007
  22. [T6] M. Thaler, The invariant densities for maps modeling intermittency, J. Statist. Phys. 79 (1995), 739-741. Zbl1081.37502
  23. [T7] M. Thaler, The Dynkin-Lamperti arc-sine laws for measure preserving transformations, Trans. Amer. Math. Soc. 350 (1998), 4593-4607. Zbl0910.28014
  24. [TR] M. Thaler and C. Reichsöllner, Arc sine type limit laws for interval mappings, manuscript, Salzburg, 1986. 
  25. [Z1] R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity 11 (1998), 1263-1276. Zbl0922.58039
  26. [Z2] R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems 20 (2000), 1519-1549. Zbl0986.37008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.