A class of unbiased kernel estimates of a probability density function
Applicationes Mathematicae (1995)
- Volume: 22, Issue: 4, page 485-497
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topRychlik, Tomasz. "A class of unbiased kernel estimates of a probability density function." Applicationes Mathematicae 22.4 (1995): 485-497. <http://eudml.org/doc/219109>.
@article{Rychlik1995,
abstract = {We propose a class of unbiased and strongly consistent nonparametric kernel estimates of a probability density function, based on a random choice of the sample size and the kernel function. The expected sample size can be arbitrarily small and mild conditions on the local behavior of the density function are imposed.},
author = {Rychlik, Tomasz},
journal = {Applicationes Mathematicae},
keywords = {rectangular kernel; kernel function; randomized estimate; probability density function; nonparametric estimate; unbiased estimate; density estimation; unbiasedness; strong consistency; kernel estimates; local behavior},
language = {eng},
number = {4},
pages = {485-497},
title = {A class of unbiased kernel estimates of a probability density function},
url = {http://eudml.org/doc/219109},
volume = {22},
year = {1995},
}
TY - JOUR
AU - Rychlik, Tomasz
TI - A class of unbiased kernel estimates of a probability density function
JO - Applicationes Mathematicae
PY - 1995
VL - 22
IS - 4
SP - 485
EP - 497
AB - We propose a class of unbiased and strongly consistent nonparametric kernel estimates of a probability density function, based on a random choice of the sample size and the kernel function. The expected sample size can be arbitrarily small and mild conditions on the local behavior of the density function are imposed.
LA - eng
KW - rectangular kernel; kernel function; randomized estimate; probability density function; nonparametric estimate; unbiased estimate; density estimation; unbiasedness; strong consistency; kernel estimates; local behavior
UR - http://eudml.org/doc/219109
ER -
References
top- [1] M. S. Bartlett, Statistical estimation of density funtions, Sankhyā Ser. A 25 (1963), 245-254. Zbl0129.32302
- [2] P. Bickel and E. Lehmann, Unbiased estimation in convex families, Ann. Math. Statist. 40 (1969), 1523-1535. Zbl0197.44602
- [3] N. N. Chentsov, An estimate of an unknown probability density under observations, Dokl. Akad. Nauk SSSR 147 (1962), 45-48 (in Russian).
- [4] L. P. Devroye, A Course in Density Estimation, Birkhäuser, Boston, 1987. Zbl0617.62043
- [5] L. P. Devroye and L. Győrfi, Nonparametric Density Estimation. The L_1 View, Wiley, New York, 1985. Zbl0546.62015
- [6] L. P. Devroye and T. J. Wagner, The L_1 convergence of kernel density estimates, Ann. Statist. 7 (1979), 1136-1139. Zbl0423.62031
- [7] H. Doss and J. Sethuraman, The price of bias reduction when there is no unbiased estimate, ibid. 17 (1989), 440-442. Zbl0669.62010
- [8] L. Gajek, On improving density estimators which are not bona fide functions, ibid. 14 (1986), 1612-1618. Zbl0623.62034
- [9] J. Koronacki, Kernel estimation of smooth densities using Fabian's approach, Statistics 18 (1987), 37-47. Zbl0612.62054
- [10] R. Kronmal and M. Tarter, The estimation of probability densities and cumulatives by Fourier series methods, J. Amer. Statist. Assoc. 63 (1968), 925-952. Zbl0169.21403
- [11] R. C. Liu and L. D. Brown, Nonexistence of informative unbiased estimators in singular problems, Ann. Statist. 21 (1993), 1-13. Zbl0783.62026
- [12] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33 (1962), 1065-1076. Zbl0116.11302
- [13] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, ibid. 27 (1956), 832-837. Zbl0073.14602
- [14] T. Rychlik, Unbiased nonparametric estimation of the derivative of the mean, Statist. Probab. Lett. 10 (1990), 329-333. Zbl0703.62049
- [15] W. R. Schucany and J. P. Sommers, Improvement of kernel type density estimators, J. Amer. Statist. Assoc. 72 (1977), 420-423. Zbl0369.62039
- [16] E. F. Schuster, Estimation of a probability density function and its derivatives, Ann. Math. Statist. 40 (1969), 1187-1195. Zbl0212.21703
- [17] B. W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives, Ann. Statist. 6 (1978), 177-184. Zbl0376.62024
- [18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
- [19] V. G. Voinov and M. S. Nikulin, Unbiased Estimators and their Applications, Vol. 1, Univariate Case, Kluwer Academic Publ., Dordrecht, 1993. Zbl0832.62019
- [20] H. Yamato, Some statistical properties of estimators of density and distribution functions, Bull. Math. Statist. 15 (1972), 113-131. Zbl0259.62036
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.