The linear programming approach to deterministic optimal control problems

Daniel Hernández-Hernández; Onésimo Hernández-Lerma; Michael Taksar

Applicationes Mathematicae (1996)

  • Volume: 24, Issue: 1, page 17-33
  • ISSN: 1233-7234

Abstract

top
Given a deterministic optimal control problem (OCP) with value function, say J * , we introduce a linear program ( P ) and its dual ( P * ) whose values satisfy sup ( P * ) inf ( P ) J * ( t , x ) . Then we give conditions under which (i) there is no duality gap

How to cite

top

Hernández-Hernández, Daniel, Hernández-Lerma, Onésimo, and Taksar, Michael. "The linear programming approach to deterministic optimal control problems." Applicationes Mathematicae 24.1 (1996): 17-33. <http://eudml.org/doc/219148>.

@article{Hernández1996,
abstract = {Given a deterministic optimal control problem (OCP) with value function, say $J^*$, we introduce a linear program $(P)$ and its dual $(P^*)$ whose values satisfy $\sup (P^*) \le \inf (P)\le J^*(t,x)$. Then we give conditions under which (i) there is no duality gap},
author = {Hernández-Hernández, Daniel, Hernández-Lerma, Onésimo, Taksar, Michael},
journal = {Applicationes Mathematicae},
keywords = {linear programming (in infinite-dimensional spaces); duality theory; optimal control; optimal problem in infinite-dimensional spaces; linear programming},
language = {eng},
number = {1},
pages = {17-33},
title = {The linear programming approach to deterministic optimal control problems},
url = {http://eudml.org/doc/219148},
volume = {24},
year = {1996},
}

TY - JOUR
AU - Hernández-Hernández, Daniel
AU - Hernández-Lerma, Onésimo
AU - Taksar, Michael
TI - The linear programming approach to deterministic optimal control problems
JO - Applicationes Mathematicae
PY - 1996
VL - 24
IS - 1
SP - 17
EP - 33
AB - Given a deterministic optimal control problem (OCP) with value function, say $J^*$, we introduce a linear program $(P)$ and its dual $(P^*)$ whose values satisfy $\sup (P^*) \le \inf (P)\le J^*(t,x)$. Then we give conditions under which (i) there is no duality gap
LA - eng
KW - linear programming (in infinite-dimensional spaces); duality theory; optimal control; optimal problem in infinite-dimensional spaces; linear programming
UR - http://eudml.org/doc/219148
ER -

References

top
  1. [1] E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, Wiley, Chichester, 1989. 
  2. [2] W. H. Fleming, Generalized solutions and convex duality in optimal control, in: Partial Differential Equations and the Calculus of Variations, Vol. I, F. Colombini et al. (eds.), Birkhäuser, Boston, 1989, 461-471. 
  3. [3] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975. 
  4. [4] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1992. Zbl0773.60070
  5. [5] W. H. Fleming and D. Vermes, Generalized solutions in the optimal control of diffusions, IMA Vol. Math. Appl. 10, W. H. Fleming and P. L. Lions (eds.), Springer, New York, 1988, 119-127. 
  6. [6] W. H. Fleming, Convex duality approach to the optimal control of diffusions, SIAM J. Control Optim. 27 (1989), 1136-1155. Zbl0693.93082
  7. [7] O. Hernández-Lerma, Existence of average optimal policies in Markov control processes with strictly unbounded costs, Kybernetika (Prague) 29 (1993), 1-17. Zbl0792.93120
  8. [8] O. Hernández-Lerma and D. Hernández-Hernández, Discounted cost Markov decision processes on Borel spaces: The linear programming formulation, J. Math. Anal. Appl. 183 (1994), 335-351. Zbl0820.90124
  9. [9] O. Hernández-Lerma and J. B. Lasserre, Linear programming and average optimality of Markov control processes on Borel spaces-unbounded costs, SIAM J. Control Optim. 32 (1994), 480-500. Zbl0799.90120
  10. [10] J. L. Kelley, General Topology, Van Nostrand, New York, 1957. 
  11. [11] R. M. Lewis and R. B. Vinter, Relaxation of optimal control problems to equivalent convex programs, J. Math. Anal. Appl. 74 (1980), 475-493. Zbl0443.49015
  12. [12] J. E. Rubio, Control and Optimization, Manchester Univ. Press, Manchester, 1986. Zbl1095.49500
  13. [13] R. H. Stockbridge, Time-average control of martingale problems: a linear programming formulation, Ann. Probab. 18 (1990), 206-217. Zbl0699.49019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.