On the limit distributions of kth order statistics for semi-pareto processes

Magdalena Chrapek; Jadwiga Dudkiewicz; Wiesław Dziubdziela

Applicationes Mathematicae (1997)

  • Volume: 24, Issue: 2, page 189-193
  • ISSN: 1233-7234

Abstract

top
Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.

How to cite

top

Chrapek, Magdalena, Dudkiewicz, Jadwiga, and Dziubdziela, Wiesław. "On the limit distributions of kth order statistics for semi-pareto processes." Applicationes Mathematicae 24.2 (1997): 189-193. <http://eudml.org/doc/219161>.

@article{Chrapek1997,
abstract = {Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.},
author = {Chrapek, Magdalena, Dudkiewicz, Jadwiga, Dziubdziela, Wiesław},
journal = {Applicationes Mathematicae},
keywords = {extreme values; semi-Pareto process; autoregressive process; auto-regressive process; compound Poisson distribution},
language = {eng},
number = {2},
pages = {189-193},
title = {On the limit distributions of kth order statistics for semi-pareto processes},
url = {http://eudml.org/doc/219161},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Chrapek, Magdalena
AU - Dudkiewicz, Jadwiga
AU - Dziubdziela, Wiesław
TI - On the limit distributions of kth order statistics for semi-pareto processes
JO - Applicationes Mathematicae
PY - 1997
VL - 24
IS - 2
SP - 189
EP - 193
AB - Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.
LA - eng
KW - extreme values; semi-Pareto process; autoregressive process; auto-regressive process; compound Poisson distribution
UR - http://eudml.org/doc/219161
ER -

References

top
  1. [1] B. C. Arnold and J. T. Hallett, A characterization of the Pareto process among stationary stochastic processes of the form X n = c min( X n - 1 , Y n ), Statist. Probab. Lett. 8 (1989), 377-380. Zbl0686.60029
  2. [2] J. Gani, On the probability generating function of the sum of Markov Bernoulli random variables, J. Appl. Probab. 19A (1982), 321-326. Zbl0488.60074
  3. [3] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983. Zbl0518.60021
  4. [4] J. Pawłowski, Poisson theorem for non-homogeneous Markov chains, J. Appl. Probab. 26 (1989), 637-642. Zbl0685.60028
  5. [5] R. N. Pillai, Semi-Pareto processes, ibid. 28 (1991), 461-465. Zbl0727.60039
  6. [6] Y. H. Wang, On the limit of the Markov binomial distribution, ibid. 18 (1981), 937-942. Zbl0475.60050
  7. [7] H. C. Yeh, B. C. Arnold and C. A. Robertson, Pareto processes, ibid. 25 (1988), 291-301. Zbl0658.62101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.