Information-type divergence when the likelihood ratios are bounded
Applicationes Mathematicae (1997)
- Volume: 24, Issue: 4, page 415-423
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. A. Bloch and L. E. Moses, Nonoptimally weighted least squares, Amer. Statist. 42 (1988), 50-53.
- [2] T. M. Cover, M. A. Freedman and M. E. Hellman, Optimal finite memory learning algorithms for the finite sample problem, Information Control 30 (1976), 49-85. Zbl0332.62017
- [3] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991. Zbl0762.94001
- [4] L. Devroy, Non-Uniform Random Variate Generation, Springer, New York, 1986.
- [5] G. S. Fishman, Monte Carlo: Concepts, Algorithms and Applications, Springer, New York, 1996.
- [6] L. Györfi and T. Nemetz, f-dissimilarity: A generalization of the affinity of several distributions, Ann. Inst. Statist. Math. 30 (1978), 105-113. Zbl0453.62014
- [7] G. Pólya and G. Szegő, Problems and Theorems in Analysis. Volume 1: Series, Integral Calculus, Theory of Functions, Springer, New York, 1972. Zbl0236.00003
- [8] A. L. Rukhin, Lower bound on the error probability for families with bounded likelihood ratios, Proc. Amer. Math. Soc. 119 (1993), 1307-1314. Zbl0816.62005
- [9] A. L. Rukhin, Recursive testing of multiple hypotheses: Consistency and efficiency of the Bayes rule, Ann. Statist. 22 (1994), 616-633. Zbl0815.62009
- [10] A. L. Rukhin, Change-point estimation: linear statistics and asymptotic Bayes risk, Math. Methods Statist. 5 (1996), 412-431. Zbl0884.62028
- [11] J. W. Tukey, Approximate weights, Ann. Math. Statist. 19 (1948), 91-92. Zbl0041.25901
- [12] I. Vajda, Theory of Statistical Inference and Information, Kluwer, Dordrecht, 1989.