A singular radially symmetric problem in electrolytes theory
Tadeusz Nadzieja; Andrzej Raczyński
Applicationes Mathematicae (1998)
- Volume: 25, Issue: 1, page 101-112
 - ISSN: 1233-7234
 
Access Full Article
topAbstract
topHow to cite
topNadzieja, Tadeusz, and Raczyński, Andrzej. "A singular radially symmetric problem in electrolytes theory." Applicationes Mathematicae 25.1 (1998): 101-112. <http://eudml.org/doc/219188>.
@article{Nadzieja1998,
	abstract = {Existence of radially symmetric solutions (both stationary and time dependent) for a parabolic-elliptic system describing the evolution of the spatial density of ions in an electrolyte is studied.},
	author = {Nadzieja, Tadeusz, Raczyński, Andrzej},
	journal = {Applicationes Mathematicae},
	keywords = {radial solutions; electrodiffusion of ions; nonlinear parabolic equation; parabolic-elliptic system; radial solution; regularization procedure},
	language = {eng},
	number = {1},
	pages = {101-112},
	title = {A singular radially symmetric problem in electrolytes theory},
	url = {http://eudml.org/doc/219188},
	volume = {25},
	year = {1998},
}
TY  - JOUR
AU  - Nadzieja, Tadeusz
AU  - Raczyński, Andrzej
TI  - A singular radially symmetric problem in electrolytes theory
JO  - Applicationes Mathematicae
PY  - 1998
VL  - 25
IS  - 1
SP  - 101
EP  - 112
AB  - Existence of radially symmetric solutions (both stationary and time dependent) for a parabolic-elliptic system describing the evolution of the spatial density of ions in an electrolyte is studied.
LA  - eng
KW  - radial solutions; electrodiffusion of ions; nonlinear parabolic equation; parabolic-elliptic system; radial solution; regularization procedure
UR  - http://eudml.org/doc/219188
ER  - 
References
top- [1] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. Zbl0781.35025
 - [2] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and long time behavior of solutions, ibid. 23 (1994), 1189-1209. Zbl0814.35054
 - [3] P. Biler and T. Nadzieja, A singular problem in electrolytes theory, Math. Methods Appl. Sci. 20 (1997), 767-782. Zbl0885.35051
 - [4] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Proc. Second World Congress of Nonlinear Analysts, Nonlinear Anal. 30 (1997), 5343-5350. Zbl0892.35073
 - [5]J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, New York, 1984. Zbl0567.35001
 - [6]A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
 - [7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1988.
 - [8] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Appl. Math. (Warsaw) 23 (1995), 169-178. Zbl0839.35110
 - [9] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.
 - [10] I. Rubinstein, Electro-Diffusion of Ions, SIAM Stud. Appl. Math. 11, Philadelphia, 1990.
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.