# A singular radially symmetric problem in electrolytes theory

Tadeusz Nadzieja; Andrzej Raczyński

Applicationes Mathematicae (1998)

- Volume: 25, Issue: 1, page 101-112
- ISSN: 1233-7234

## Access Full Article

top## Abstract

top## How to cite

topNadzieja, Tadeusz, and Raczyński, Andrzej. "A singular radially symmetric problem in electrolytes theory." Applicationes Mathematicae 25.1 (1998): 101-112. <http://eudml.org/doc/219188>.

@article{Nadzieja1998,

abstract = {Existence of radially symmetric solutions (both stationary and time dependent) for a parabolic-elliptic system describing the evolution of the spatial density of ions in an electrolyte is studied.},

author = {Nadzieja, Tadeusz, Raczyński, Andrzej},

journal = {Applicationes Mathematicae},

keywords = {radial solutions; electrodiffusion of ions; nonlinear parabolic equation; parabolic-elliptic system; radial solution; regularization procedure},

language = {eng},

number = {1},

pages = {101-112},

title = {A singular radially symmetric problem in electrolytes theory},

url = {http://eudml.org/doc/219188},

volume = {25},

year = {1998},

}

TY - JOUR

AU - Nadzieja, Tadeusz

AU - Raczyński, Andrzej

TI - A singular radially symmetric problem in electrolytes theory

JO - Applicationes Mathematicae

PY - 1998

VL - 25

IS - 1

SP - 101

EP - 112

AB - Existence of radially symmetric solutions (both stationary and time dependent) for a parabolic-elliptic system describing the evolution of the spatial density of ions in an electrolyte is studied.

LA - eng

KW - radial solutions; electrodiffusion of ions; nonlinear parabolic equation; parabolic-elliptic system; radial solution; regularization procedure

UR - http://eudml.org/doc/219188

ER -

## References

top- [1] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. Zbl0781.35025
- [2] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and long time behavior of solutions, ibid. 23 (1994), 1189-1209. Zbl0814.35054
- [3] P. Biler and T. Nadzieja, A singular problem in electrolytes theory, Math. Methods Appl. Sci. 20 (1997), 767-782. Zbl0885.35051
- [4] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Proc. Second World Congress of Nonlinear Analysts, Nonlinear Anal. 30 (1997), 5343-5350. Zbl0892.35073
- [5]J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, New York, 1984. Zbl0567.35001
- [6]A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
- [7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1988.
- [8] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Appl. Math. (Warsaw) 23 (1995), 169-178. Zbl0839.35110
- [9] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.
- [10] I. Rubinstein, Electro-Diffusion of Ions, SIAM Stud. Appl. Math. 11, Philadelphia, 1990.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.