On a nonlocal elliptic problem

Andrzej Raczyński

Applicationes Mathematicae (1999)

  • Volume: 26, Issue: 1, page 107-119
  • ISSN: 1233-7234

Abstract

top
We study stationary solutions of the system u t = ( ( m - 1 ) / m u m + u φ ) , m => 1, Δφ = ±u, defined in a bounded domain Ω of n . The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.

How to cite

top

Raczyński, Andrzej. "On a nonlocal elliptic problem." Applicationes Mathematicae 26.1 (1999): 107-119. <http://eudml.org/doc/219223>.

@article{Raczyński1999,
abstract = {We study stationary solutions of the system $u_t = ∇ ((m-1)/m ∇u^m + u∇φ)$, m => 1, Δφ = ±u, defined in a bounded domain Ω of $ℝ^n$. The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.},
author = {Raczyński, Andrzej},
journal = {Applicationes Mathematicae},
keywords = {electrodiffusion of ions; nonlinear elliptic problem; theory of semiconductors},
language = {eng},
number = {1},
pages = {107-119},
title = {On a nonlocal elliptic problem},
url = {http://eudml.org/doc/219223},
volume = {26},
year = {1999},
}

TY - JOUR
AU - Raczyński, Andrzej
TI - On a nonlocal elliptic problem
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 1
SP - 107
EP - 119
AB - We study stationary solutions of the system $u_t = ∇ ((m-1)/m ∇u^m + u∇φ)$, m => 1, Δφ = ±u, defined in a bounded domain Ω of $ℝ^n$. The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.
LA - eng
KW - electrodiffusion of ions; nonlinear elliptic problem; theory of semiconductors
UR - http://eudml.org/doc/219223
ER -

References

top
  1. [1] G. I. Barenblatt, V. M. Entov and V. M. Ryzhik, Theory of Fluid Flows Through Natural Rocks, Kluwer, Dordrecht, 1990. Zbl0769.76001
  2. [2] J.-M. Bony, Principe du maximum, inégalité de Harnack, et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 277-304. Zbl0176.09703
  3. [3] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary condition, Nonlinear Anal. 19 (1992), 229-239. Zbl0781.35025
  4. [4] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, ibid. 23 (1994), 1189-1209. Zbl0814.35054
  5. [5] P. Biler, D. Hilhorst and T. Nadzieja, 
  6. [E]xistence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308. 
  7. [6] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. Zbl0818.35046
  8. [7] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. Zbl0817.35041
  9. [8] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Anal. 30 (1997), 5343-5350. Zbl0892.35073
  10. [9] P. Biler and T. Nadzieja, A singular problem in electrolytes theory, Math. Methods Appl. Sci. 20 (1997), 767-782. Zbl0885.35051
  11. [10] P. Biler and T. Nadzieja, A nonlocal singular parabolic problem modelling gravitational interaction of particles, Adv. Differential Equations 3 (1998), 177-197. Zbl0952.35008
  12. [11] P. Biler, T. Nadzieja and A. Raczyński, Nonlinear singular parabolic equations, in: Reaction-Diffusion Systems (Trieste, 1995), Lecture Notes in Pure and Appl. Math. 194, G. Caristi and E. Mitidieri (eds.), Dekker, 1998, 21-36. Zbl0912.35090
  13. [12] P. Debye und E. Hückel, Zur Theorie der Electrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z. 24 (1923), 185-217. Zbl49.0587.11
  14. [13] A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 5 (1994), 677-703. Zbl0820.35128
  15. [14] A. Krzywicki and T. Nadzieja, Poisson-Boltzmann equation in 3 , Ann. Polon. Math. 54 (1991), 125-134. Zbl0733.35039
  16. [15] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
  17. [16] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, Wien-New York, 1990. Zbl0765.35001
  18. [17] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Appl. Math. (Warsaw) 23 (1995), 169-178. Zbl0839.35110
  19. [18] T. Nadzieja and A. Raczyński, A singular radially symmetric problem in electrolytes theory, ibid. 25 (1998), 101-112. Zbl0919.35020
  20. [19] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001
  21. [20] M. Struwe, Variational Methods, Springer, New York, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.