On a nonlocal elliptic problem

Andrzej Raczyński

Applicationes Mathematicae (1999)

  • Volume: 26, Issue: 1, page 107-119
  • ISSN: 1233-7234

Abstract

top
We study stationary solutions of the system , m => 1, Δφ = ±u, defined in a bounded domain Ω of . The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.

How to cite

top

Raczyński, Andrzej. "On a nonlocal elliptic problem." Applicationes Mathematicae 26.1 (1999): 107-119. <http://eudml.org/doc/219223>.

@article{Raczyński1999,
abstract = {We study stationary solutions of the system $u_t = ∇ ((m-1)/m ∇u^m + u∇φ)$, m => 1, Δφ = ±u, defined in a bounded domain Ω of $ℝ^n$. The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.},
author = {Raczyński, Andrzej},
journal = {Applicationes Mathematicae},
keywords = {electrodiffusion of ions; nonlinear elliptic problem; theory of semiconductors},
language = {eng},
number = {1},
pages = {107-119},
title = {On a nonlocal elliptic problem},
url = {http://eudml.org/doc/219223},
volume = {26},
year = {1999},
}

TY - JOUR
AU - Raczyński, Andrzej
TI - On a nonlocal elliptic problem
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 1
SP - 107
EP - 119
AB - We study stationary solutions of the system $u_t = ∇ ((m-1)/m ∇u^m + u∇φ)$, m => 1, Δφ = ±u, defined in a bounded domain Ω of $ℝ^n$. The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.
LA - eng
KW - electrodiffusion of ions; nonlinear elliptic problem; theory of semiconductors
UR - http://eudml.org/doc/219223
ER -

References

top
  1. [1] G. I. Barenblatt, V. M. Entov and V. M. Ryzhik, Theory of Fluid Flows Through Natural Rocks, Kluwer, Dordrecht, 1990. Zbl0769.76001
  2. [2] J.-M. Bony, Principe du maximum, inégalité de Harnack, et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 277-304. Zbl0176.09703
  3. [3] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary condition, Nonlinear Anal. 19 (1992), 229-239. Zbl0781.35025
  4. [4] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, ibid. 23 (1994), 1189-1209. Zbl0814.35054
  5. [5] P. Biler, D. Hilhorst and T. Nadzieja, 
  6. [E]xistence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308. 
  7. [6] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. Zbl0818.35046
  8. [7] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. Zbl0817.35041
  9. [8] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Anal. 30 (1997), 5343-5350. Zbl0892.35073
  10. [9] P. Biler and T. Nadzieja, A singular problem in electrolytes theory, Math. Methods Appl. Sci. 20 (1997), 767-782. Zbl0885.35051
  11. [10] P. Biler and T. Nadzieja, A nonlocal singular parabolic problem modelling gravitational interaction of particles, Adv. Differential Equations 3 (1998), 177-197. Zbl0952.35008
  12. [11] P. Biler, T. Nadzieja and A. Raczyński, Nonlinear singular parabolic equations, in: Reaction-Diffusion Systems (Trieste, 1995), Lecture Notes in Pure and Appl. Math. 194, G. Caristi and E. Mitidieri (eds.), Dekker, 1998, 21-36. Zbl0912.35090
  13. [12] P. Debye und E. Hückel, Zur Theorie der Electrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z. 24 (1923), 185-217. Zbl49.0587.11
  14. [13] A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 5 (1994), 677-703. Zbl0820.35128
  15. [14] A. Krzywicki and T. Nadzieja, Poisson-Boltzmann equation in , Ann. Polon. Math. 54 (1991), 125-134. Zbl0733.35039
  16. [15] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
  17. [16] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, Wien-New York, 1990. Zbl0765.35001
  18. [17] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Appl. Math. (Warsaw) 23 (1995), 169-178. Zbl0839.35110
  19. [18] T. Nadzieja and A. Raczyński, A singular radially symmetric problem in electrolytes theory, ibid. 25 (1998), 101-112. Zbl0919.35020
  20. [19] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001
  21. [20] M. Struwe, Variational Methods, Springer, New York, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.