On the connectivity of efficient point sets

Wen Song

Applicationes Mathematicae (1998)

  • Volume: 25, Issue: 1, page 121-127
  • ISSN: 1233-7234

Abstract

top
The connectivity of the efficient point set and of some proper efficient point sets in locally convex spaces is investigated.

How to cite

top

Song, Wen. "On the connectivity of efficient point sets." Applicationes Mathematicae 25.1 (1998): 121-127. <http://eudml.org/doc/219190>.

@article{Song1998,
abstract = {The connectivity of the efficient point set and of some proper efficient point sets in locally convex spaces is investigated.},
author = {Song, Wen},
journal = {Applicationes Mathematicae},
keywords = {vector optimization; efficient point sets; density; connectivity; efficient point set; locally convex spaces},
language = {eng},
number = {1},
pages = {121-127},
title = {On the connectivity of efficient point sets},
url = {http://eudml.org/doc/219190},
volume = {25},
year = {1998},
}

TY - JOUR
AU - Song, Wen
TI - On the connectivity of efficient point sets
JO - Applicationes Mathematicae
PY - 1998
VL - 25
IS - 1
SP - 121
EP - 127
AB - The connectivity of the efficient point set and of some proper efficient point sets in locally convex spaces is investigated.
LA - eng
KW - vector optimization; efficient point sets; density; connectivity; efficient point set; locally convex spaces
UR - http://eudml.org/doc/219190
ER -

References

top
  1. [1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984. Zbl0641.47066
  2. [2] H. P. Benson, An improved definition of proper efficiency for vector minimization with respect to cones, J. Math. Anal. Appl. 71 (1979), 232-241. Zbl0418.90081
  3. [3] G. R. Bitran and T. L. Magnanti, The structure of admissible points with respect to cone dominance, J. Optim. Theory Appl. 29 (1979), 573-614. Zbl0389.52021
  4. [4] J. M. Borwein, The geometry of Pareto efficiency over cones Math. Oper. Statist. Ser. Optim. 11 (1980), 235-248. Zbl0447.90077
  5. [5] J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization, Trans. Amer. Math. Soc. 338 (1993), 105-122. Zbl0796.90045
  6. [6] X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces, J. Optim. Theory Appl. 83 (1994), 83-96. Zbl0845.90104
  7. [7] X. H. Gong, Connectedness of the efficient solution set of a convex vector optimization in normed spaces, Nonlinear Anal. 23 (1994), 1105-1114. Zbl0822.90115
  8. [8] X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces, Math. Methods Oper. Res. 44 (1996), 135-145. Zbl0859.90109
  9. [9] A. Guerraggio, E. Molho and A. Zafferoni, On the notion of proper efficiency in vector optimization, J. Optim. Theory Appl. 82 (1994), 1-21. Zbl0827.90123
  10. [10] R. Hartley, On cone efficiency, cone convexity and cone compactness, SIAM J. Appl. Math. 34 (1978), 211-222. Zbl0379.90005
  11. [11] J.-B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407-422. Zbl0578.54013
  12. [12] Y. D. Hu and E. J. Sun, Connectedness of the efficient point set in strictly quasiconcave vector maximization, J. Optim. Theory Appl. 78 (1993), 613-622. Zbl0794.90051
  13. [13] J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Lang, Frankfurt, 1986. Zbl0578.90048
  14. [14] B. L. Lin, P. K. Lin and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528. Zbl0649.46015
  15. [15] D. T. Luc, Theory of Vector Optimization, Springer, 1989. 
  16. [16] D. T. Luc, Contractibility of efficient points sets in normed spaces, Nonlinear Anal. 15 (1990), 527-535. Zbl0718.90077
  17. [17] E. K. Makarov and N. N. Rachkovski, Density theorems for generalized Henig proper efficiency, J. Optim. Theory Appl. 91 (1996), 419-437. Zbl0871.90077
  18. [18] P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization, ibid. 25 (1978), 459-467. Zbl0363.90108
  19. [19] J. W. Nieuwenhuis, Some results about nondominated solutions, ibid. 36 (1982), 289-310. Zbl0452.90074
  20. [20] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971. 
  21. [21] W. Song, A note on connectivity of efficient point sets, Arch. Math. (Basel) 65 (1995), 540-545. Zbl0856.90096
  22. [22] W. Song, Connectivity of efficient solution sets in vector optimization of set-valued mappings, Optimization 39 (1997), 1-11. Zbl0867.90099
  23. [23] A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives, J. Optim. Theory Appl. 40 (1983), 537-557. Zbl0496.90073
  24. [24] P. L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, ibid. 14 (1974), 319-377. Zbl0268.90057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.